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Abstract

The main goal of this thesis is to deal with the colour texture representation problem
from a computer vision point of view. It is easy to demonstrate that the extension
of classical grey level methods for texture processing to the three channels of the
corresponding colour texture does not succeed in having a human-like behaviour on
this visual task. Chromatic induction mechanisms of the human visual system, that
has been widely studied in psychophysics, plays an important role on the dependency
of the colour perception from its surround. Chromatic induction includes two com-
plementary e�ects: chromatic assimilation and chromatic contrast. While the former
has been psychophysically measured and lately extended to computer vision, some
aspects on the last one still remain to be measured. The main contribution of this
thesis is a computational operator that simulates the contrast induction phenomena
that has demonstrated a coherent behaviour on di�erent texture colour perception
problems, since it allows to emphasise colour di�erences on almost-unimodal colour
distributions and consequently improving the segmentation of colour regions. An open
problem that will remain open from this work is the psychophysical measurement of
the operator parameters, in the same sense as it was done with the s-cielab for the
assimilation process.

A perceptually-consistent colour texture computational representation is a goal of
extreme importance in automatic colour-textured surface inspection problems, where
the classic colorimetric tools does not succeed in given good colour appearance mea-
surements. In this scope, a second contribution is a colour-texture representation
based on global colour features considering colour assimilation and local features
based on properties of colour blobs considering colour contrast. This representation
is applied to an automatic tile classi�cation problem.

Since an important accuracy is needed to measure such small di�erences, we have
devoted a great part of this work to the colour acquisition issue, and to the problem
of achieving good colour constancy properties on the acquired images. In this sense,
a last contribution of this work has been to de�ne an on-line colour constancy algo-
rithm for a high colour precision scan line camera based on a diagonal linear colour
constancy model previously guaranteed by linear transform changing the camera sen-
sitivity properties.
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Resum

El principal objectiu d'aquest treball de tesi �es tractar el problema de la representaci�o
de la textura en color des del punt de vista de la visi�o per computador. No �es dif��cil
demostrar que l'extensi�o dels m�etodes classics de processament de textura per imatges
en nivells de grisos a cada un dels tres canals d'una imatge en color no �es sin�onim
d'assolir resultats semblants als de la percepci�o humana en aquesta tasca. Els mecan-
ismes d'inducci�o crom�atica del sistema visual hum�a, que han estat �ampliament estudi-
ats en psicof��sica, tenen un paper molt important en la depend�encia que crea l'entorn
en la percepci�o del color. La inducci�o crom�atica inclou dos efectes complementaris:
l'assimilaci�o crom�atica i el contrast crom�atic. Mentre el primer ja ha estat mesurat
des de la psicof��sica i ext�es a la visi�o per computador, molts aspectes del segon encara
queden per fer. La contribuci�o principal d'aquesta tesi �es la de�nici�o d'un operador
computacional que simula el fen�omen del contrast crom�atic i que t�e un comportament
coherent amb el del sistema visual hum�a en diferents problemes de la percepcci�o de
la textura en color, ja que permet enfatitzar les difer�encies de color en distribucions
que s�on quasib�e unimodals i conseq�uentment millorar la segmentaci�o de les petites
regions de color. El problema que encara queda obert despr�es d'aquest treball, �es la
realitzaci�o de mesures psicof��siques pels par�ametres de l'operador de�nit, tal com es
va fer amb l's-cielab per al proc�es de l'assimilaci�o.

La de�nici�o de representacions computacionals de textura i color que siguin per-
ceptuals �es un objectiu de gran import�ancia en els problemes d'inspecci�o autom�atica
de superf��cies en els que els dispositius de la colorimetria cl�assica no permeten donar
bones mesures d'aparen�ca de color. La segona contribuci�o d'aquesta tesi, s'emmarca
en aquest �ambit, i de�neix una representaci�o computacional basada en mesures glob-
als de color que inclouen l'assimilaci�o de color i mesures locals de les propietats de
les regions segmentades considerant el contrast crom�atic. Aquesta representaci�o �es
aplicada al problema de la classi�caci�o autom�atica de gres porcel�anic.

Tenint en compte que s'han de realitzar mesures molt acurades de petites difer�encies,
s'ha dedicat una gran part d'aquest treball al tema de l'adquisici�o d'imatges en color,
i en concret al problema d'aconseguir bones propietats de const�ancia de color a les
imatges adquirides. En aquest sentit, la darrera contribuci�o d'aquest treball ha estat
la de�nici�o d'un algorisme de cont�ancia de color en l��nea per a una c�amera lineal
amb alta precisi�o de color. Aquest m�etode s'ha basat en el model lineal diagonal de
const�ancia de color pr�eviament garantit amb una transformaci�o lineal que canvia les
propietats de la sensibilitat de la c�amera.
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Chapter 1

Introduction

The aim of this thesis is the computational representation of two surface properties:

colour and texture. To build computational representations of visual information is

an essential goal in the computer vision �eld in which this thesis is framed. A com-

putational texture-colour representation has to allow building automatic descriptions

of surfaces that can help in a wide range of computer vision tasks. A large number of

works have been reported in the last decades on these two properties separately. But,

for the last years the number of works dealing with both properties at the same time

is increasing considerably. In this chapter we give a brief review of previous works on

colour and texture to put the scope of this thesis within the computer vision �eld.

1.1 Surface properties

Any natural scene in the world is projected on our retina as a map of di�erent regions
that are the projections of 3D surfaces. The properties of these projected surfaces
are concrete perceptions derived from speci�c positioning conditions of the surfaces
in the scene and the observer, and the lighting conditions that provoke the neuronal
excitation of the visual system. In computer vision, people usually work with the
following set of surface properties: shape, orientation, colour and texture. In this
work we will only deal with the last two.

Up to this point, we have only revealed one of the two goals of this thesis. The
second goal of this thesis is also to develop the engineering background to take the
computational texture colour representation to make it works on a real system ready to
solve problems of automatic measurement of surface properties in the industry. A wide
range of automatisation of industrial problems requires the measurement of coloured
surfaces. These measurements are easily solved using calibrated colorimetric devices
specially developed to measure colour-homogeneous surfaces. This solution fails when
surfaces are coloured textures. Colorimetric measurements on colour texture surfaces
give a quantitative measurement that is the result of a colour integration over the
surface, and two very di�erent colour textures can give similar measurements even
though they have a very di�erent spatial appearance, this is the case for the three

1
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Figure 1.1: Images with the same colour mean but di�erent appearance

images shown in �gure 1.1 that share the same colour mean but a very di�erent colour
texture appearance.

In the next sections we will give a brief outline on how colour and texture have
been treated in computer vision.

1.1.1 Colour

Colour is the visual cue derived from the human visual processing of the electromag-
netic radiation that reaches the retina [78]. This process can be seen as a change in
representation, which, in general, implies a dimensionality reduction. Although colour
has not been given much importance in the �rst decades of computer vision, since
most of the previous work in computer vision has been made for grey level images, the
situation has changed and colour has become a very important visual cue for most of
the vision tasks, such as object recognition [47], image indexing [100], tracking [66],
shape extraction from colour variations [16], etc.

To introduce colour cue in the visual tasks we must take into consideration the
variability of this visual stimulus. Colour perception is always dependent on the
context: the illuminant, the receptor sensibility and the scene geometry have a great
in
uence on the perceived scene. The human visual system presents a chromatic
adaptation ability, which allows avoiding in some sense those context in
uences over
the �nal perception. Any system doing a visual task involving colour processing
should always take into account the colour constancy problem. This problem has
been the topic of a lot of research that will be reviewed in chapter 3.

1.1.2 Texture

Texture is the visual cue derived from non-homogeneous surfaces in the scenes. De-
pending on the surface re
ectance, positioning of the observer and lighting conditions,
we can obtain di�erent texture images from the same surface. Although there are
some recent works dealing with the recovery of the physical re
ectance properties of
a texture [25, 48] and some other works that have recovered 3D shape information
from texture [115, 44], the most traditional approach in computer vision has been the
analysis of the texture images without taking considerations on the image formation
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process. Extensive reviews can be found in [49, 111, 103, 90], where it is shown that
texture has been studied for di�erent purposes such as segmentation, classi�cation or
synthesis. Despite the large number of works, there is still a lack of a standard texture
de�nition and does not exist a widely accepted texture representation space, as it ex-
ists for colour. Interesting works directed to de�ne a standard texture space based on
perceptual considerations has to be considered [89, 88, 101], since this kind of work
could be the basis to establish a standard computational representation. Before to go
deeply on computational representations we will do a short inside on psychophysics
theories on texture perception, that have been the basis for some of the works in
computer vision.

In psychophysics, the aim has been to understand how the human visual system
represents textures and which are the mechanisms used for texture segregation. Tex-
ture is one of the most complex visual cues and for the moment there is not a unique
accepted theory. Two basic approaches are confronted as being the basis for a vi-
sual internal representation of texture. On one hand, feature extraction processes
have received a hard support from the Julesz's texton theory [62], and on the other
hand a global spatial frequency analysis seems to be indispensable as it has been
demonstrated by J. Beck et al in [7]. Let us go deeply in these two approaches.

The �rst approach, the Julesz's texton theory is based on the fact that di�erences
between two textures, are due to di�erences in the �rst order statistics, or densities, of
the texton attributes, it ignores the positional relationships between adjacent textons.
Texton attributes are de�ned as the blob properties, that is, size and contrast for
general blobs, and orientation for elongated blobs. Other textons can be line endings
or terminators, but a more exhaustive list of texton has not been developed yet.
Although all the texton theory conclusions are based on psychophysical experiments,
Julesz associates the feature extractors with simple or complex cortical receptive �elds
described by Hubel and Wiesel in 1968.

The second approach, leaded by J. Beck [7] and supported by other researchers
[52, 51] advocates that, di�erences on �rst order statistics of local properties indepen-
dently of the blob arrangement is not enough to be able to capture the segregation of
textures, since in a wide range of cases, di�erences are due to patterns emerging from
the di�erent arrangements of image blobs. In these cases a global spatial-frequency
analysis is needed in order to represent di�erent textures.

In �gure 1.2 we demonstrate the complementary character of these two approaches.
While the textures (a) and (b) can be easily di�erentiated in the frame of the Julesz's
texton theory due to di�erences on blob contrast; textures (b) and (c) are equals
from this theory, since there is no di�erence in terms of texton attributes. Di�erences
between textures (b) and (c) can be easily derived in the frame of a of a global
frequency analysis, for which a di�erence in emergent orientations can be considered.

Considering the conclusions from psychophysical theories, di�erent approaches
have been followed to solve problems involving di�erent visual tasks in computer
vision. We brie
y summarise the taxonomy proposed by Tuceryan et al in [103]:

Geometrical approach Texture is described by the set of textural primitives that
composes the image, therefore a texton isolation step is always needed. Once the
basic elements have been extracted, two approaches are essentially used. One
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(a) (b) (c)

Figure 1.2: Examples of textures formed by simple blobs and their emergent pat-

terns.

computes statistical properties of the extracted elements and their attributes
[105]. The second one extracts the placement rules that organise these shapes
in the texture [41], this last approach is called a structural approach.

Model-based approach Texture is considered as the realisation of a concrete math-
ematical model, hence it is de�ned by the model parameters. From a method-
ological point of view this is the most well de�ned solution, problems can arise
from generality, it does not exist a unique model that can represent any natural
texture. Interesting texture models can be seen in [1, 54, 61, 87, 23]

Filtering approach Texture is described by the responses of convolving a set of �l-
ters with the image. This approach is based on the previous introduced idea
of the existence of an spatial-frequency global analysis of the textures in the
human visual system. Malik and Perona in [71] proposed a global preatten-
tive texture perception model based on neuro-physiological and psychophysical
considerations. A global Fourier-based analysis of textures has been recently
proposed in [39] and when spatial dependency is needed the Gabor transform
has been used [59, 73].

From all these approaches, di�erent visual tasks can be carried out. In texture seg-
mentation, region-based or edge-based mechanisms have been used, all these methods
try to evaluate when two small regions have a uniform texture or, on the contrary, have
di�erent textures. The general problem of texture representation has been mainly de-
veloped for image retrieval, image annotation or image classi�cation. In all these
problems the �nal goal is to build a feature vector expressing an enough quantitative
measure of the image content. The rest of this work will be devoted to study how
texture and colour can be combined considering these previous experiences on gray
level textures.
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(a)

(b) (c) (d)

Figure 1.3: (a) A colour image. (b) Red channel of (a), (c) Green channel of (a),

(d) Blue channel of (a).

1.2 Colour and Texture

Colour texture representation is a current topic in computer vision. Although both
are properties of a surface as we have just introduced, these two visual cues have been
usually studied separately. One reason is that while colour is a point feature given
by the value of a pixel in several bands or channels, texture has to be modeled as a
spatial relationship of the point with its neighbours. The trichromatic representation
of colour images taken from common imaging devices has provoked an important
dependency, that is probably not the best to deal with these two dependent properties.
In �gure 1.3 we can see the RGB channel representation of a colour image, where we
can observe that the spatial information of the colour image is not present in the
separate channels and therefore speci�c representations have to be constructed in
order to deal with both cues at the same time.

The study of colour texture representations has received an increasing attention.
The objective of many researchers has been to �nd co{joint representations of spa-
tial and chromatic information which capture the spatial dependence (in particular,
correlation) within and among spectral bands. One of the most frequent approaches
is the construction of a feature vector mixing grey level texture features and colour
features [19, 102]. Another one is to extend classical texture models, such as Markov
Random �elds and the autocorrelation function, in order to deal with multichannel
images [82, 53]. Other works, like [42], convert RGB values into a single code from
which texture measurements are computed as if it were a grey scale image. Spatio{
chromatic representations are computed in [17, 37] over the smoothed Laplacian of
the image, and the structural tensor that is usually used to represent local texture
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properties is extended to colour images in [113].

Finally, there are some works that have been in
uenced by known perceptual
mechanisms of the human visual system, where the interaction of colour with the
spatial frequency of the coloured patterns is considered [84, 80]. These works have
considered some important conclusions from psychophysical experiments on colour
texture interaction which are the conclusions of some works [2, 85, 109, 119, 118]. The
contributions of these works and its application to computer vision will be reviewed in
more detail in chapter 4. This perceptual mechanism simulates the colour assimilation
phenomenon of the human visual system that is a�ected by a spatial blurring of
the colour representation when looking at colour textures presenting high spatial
frequencies.

In this work we will present a complementary operator that will allow simulating
the colour contrast phenomenon that appears in the visual system when looking at
colour textures presenting low spatial frequencies.

1.3 Thesis Outline

The content of this thesis work has been organised in �ve chapters. Chapter 1 is the
introduction we have done above. We have introduced the thesis goals and a brief
introduction on how colour and texture have been studied in computer vision.

Chapter 2 is devoted to explain the design of a colour image acquisition system.
Since one of the �nal goals of this work is to design a vision system able to measure
colour appearance on textures as colorimetry does on homogeneous surfaces, we will
need to take an special attention to the accuracy and to the stability of the designed
system. Is for this reason we will dedicate a complete chapter to the problem of
acquiring colour images with a CCD-based sensor.

In chapter 3, we give the basis of a colour image formation and the laws underlying
colour constancy theories. Afterwards, a brief review of the most important methods
for colour constancy is given. In order to be able to apply a linear diagonal model the
spectral sharpening transform is computed once the sensitivities of the camera have
been recovered. In the last part of this chapter an on{line colour constancy algorithm
for scan line cameras is proposed.

Chapter 4 begins with a review on psychophysical literature, it is directed to es-
tablish the basis for the most common colour induction phenomena: assimilation and
contrast. Considering the most important conclusions from the previous review, a
computational pattern-colour separable model based on the opponent-colour space
is derived. The chromatic assimilation model based on a perceptual blurring is in-
troduced, and all the details of the Spatial{CIELAB are explained. In the following
sections we propose a chromatic contrast model that is based on a perceptual sharp-
ening. Three types of perceptual sharpening are proposed: local, region and spread.
Finally, we show the behaviour of the spread sharpening on some natural textures.

The goal of chapter 5 is to build a computational colour texture representation
based on the previous considerations, and to apply it to a pair of automatic surface
inspection problems, these are: tile classi�cation and printing quality evaluation. In
both cases we will see how the perceptual blurring proposed allows improving the
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results.
In the last chapter we sum up all the conclusions of this thesis work, and after

a short discussion on the results we describe the open research directions that have
been outlined from this work.
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Chapter 2

Colour image acquisition

As we aim to work on machine vision problems, where colour is one of the main cues

to take in regard, the acquisition system is the �rst issue to deal with. It is not the

same to construct a system to get geometrical or structural measures than de�ning

the best way to acquire a surface under spatially{homogeneous conditions. Another

feature that the system has to obey is the ability to measure small colour di�erences.

We will analyse the relevant parameters of the CCD cameras and their involved

problems and how to solve them. We also focus on the construction of a lighting

architecture for a surface inspection system. Taking into account these requirements

let us examine the di�erent alternatives, and the proceedings that should be done.

2.1 Dark current

In this chapter we are assuming that the image acquisition is done by means of a
CCD device. It could be done using other type of sensors, such as CMOS devices
but, up the moment, CCD's are the most suitable for high performance and low cost

imagery. In such devices the pixel information comes from a photo-sensor and the
circuitry involved in transforming emitted light to a digital or analog quantity. In
an ideal case [43], given a point in the light emitted L(x; y) the �nal result Z(x; y)
should be

Z(x; y) = tL(x; y)

where t includes the exposure time and the factors involved in the manipulation of
the signal. However it is not the case. Many problems a�ect the acquisition process;
some of them are noise, black current and sensitivity irregularities. Combining these
e�ects the �nal representation is given by

Z(x; y) = Dt(x; y) + tF (x; y)L(x; y) +N(x; y)

where Dt(x; y) (dark �eld) is the signal from the dark current signal (also called
thermic noise) [55]. It is induced by thermal excitation of the CCD components and

9
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Figure 2.1: Example of a dark �eld for a TVI line scan camera. When acquiring an

image without dark current signal correction, the colour information has 35 intensity

levels above what it should be.

may vary with position in the array of photo-sensors, and exposure time. F (x; y)
is the function that captures the relative sensitivity of the device in each position
of the CCD array in relation to its ideal behaviour. F (x; y) is known as the 
at

�eld. N(x; y) is the intrinsic noise of the system. Both Dt(x; y) and F (x; y) can be
avoided but not N(x; y). Usually N(x; y) is de�ned as a constant amount in db all
over the sensor and related to the input signal (signal{to{noise{ratio), and it should
be provided by the manufacturer. Our �rst choice is the camera with the less noise
level. Later in this chapter we will describe how to solve the dark current signal
problem. Although the 
at �eld de�nes the CCD sensitivity it could be analysed
with other e�ects introduced by the optics and lighting conditions as a whole. This
will be studied in the next chapter.

As Dt(x; y) is an additive signal and supposing that the N(x; y) signal is small
enough, it could be easily subtracted from Z(x; y). Getting Dt(x; y) is as simple as
setting L(x; y) = 0, that is covering the entrance of the light, so that Z(x; y) only
respond to the dark current signal. However, and in order to minimise the e�ect of
the intrinsic noise, we need to average several dark �elds. Another parameter that is
signi�cant in the resulting dark �eld is the e�ect of the exposure time. The coeÆcient
t represents the fact that the dark current depends on the amount of time the CCD
is active. This means that a set of dark currents corrections should be recorded for
each di�erent exposure time our system will work. Fortunately, most of the industrial
vision problems work at a �xed cadence, and we only need one such a measure.

The last point that we should be aware of is the e�ect of the device temperature.
Dark current increases when the temperature increases. To solve this problem the
sensor is cooled using liquid nitrogen (in the most expensive case) or using forced{air
cooling which is the cheapest solution, among other possibilities [15]. In industrial
application the forced{air cooling is the most used solution. This solution stabilises
the temperature after some working time. It should be considered, and take the
correction dark �eld information after one hour and a half the camera comes into
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operation, as an average. Figure 2.1 shows an example of the dark �eld calculated
from a small section of a TVI line scan camera line response. It should be noticed
there is a di�erence of 35 intensity levels on average between the real acquired image
and the corrected one. That means colours become overemphasised in some cases.
Moreover, this particular case seems to include problems with the synchronisation
between the camera and the frame grabber, although the manufacturers state that it
is correct.

2.2 Camera architecture

This section tries to answer to the question of which is the best camera architecture
to acquire colour 
at surfaces, obtaining the best colour �delity. The two main archi-
tectures used in industrial vision are the matrix array cameras and the linear array
cameras. Whenever it is possible it is much better to use a matrix camera than a
linear one. Some of the reasons for this choice are:

� There is no need of camera synchronisation with the conveyor{belt. Even in
the case when the conveyor{belt can not stop, we can use non{interlaced matrix
cameras with high shutter speed to remove the motion blurring e�ect. In the
case of line scan cameras the exposure time, the horizontal synchronisation and
the vertical sync signal have to be adjusted to the cadence of the production
line. The last one of these parameters is the most sensitive to produce a good
result.

� It is easier to focus the scene. As what we see in the monitor is what we get
it is quite obvious to focus the scene without using any arti�ce. In linear array
cameras what we see is just a line of the scene and it is diÆcult to visually focus
the image from a scene that could be complex. Some simple and a priori known
patterns should be used for this purpose.

� There is no need to perfectly align the acquisition system with the transporter
system. Whereas when using a matrix camera we get an image of the scene in
a 
ash (stoping the conveyor or any other means), it is not possible with a line
scan camera.

When choosing a colour matrix camera it is important to use a 3 CCD instead of
a 1 CCD camera. The colour sensitivity is much better in the �rst case because when
using a 1 CCD camera, the responses on the red, green and blue channels are mixed
in the same CCD, obtaining less spatial colour resolution.

However, there are some cases where matrix cameras are not suitable to the in-
spection problem. One set of them is that involved in this work: industrial vision
problems where the solution needs a very accurate degree of colour representation on
the acquired image. The problem of obtaining a good image is not from the camera
itself but from the lighting system. Now, we are going to examine which are the
options and the pros and cons for both cases.
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Figure 2.2: Lighting architecture for matrix camera acquisition. The light is di�used

using a re
ective dome and a di�user material to avoid predominant light directions

from bulbs.

2.2.1 Lighting for a matrix camera

In this section we will explain why the matrix camera performs badly in colour accu-
racy. Although there have been interesting developments on how to place lights to get
uniform frontal illumination [45], we have not succeeded in getting good homogeneity
properties. Therefore, we decided to go to a more directed architecture. The lighting
architecture we have used is shown in the the diagram in �gure 2.2. The light source
comes from below the sample a hits a white dome. The semi{spherical shape of the
dome makes the light to reach the sample from all possible directions and angles. This
is what makes the illumination to be homogeneous. In the theoretical case it should
be a 
at back{light surface source but if the dimensions of the sample are greater
than a few centimetres there is not such a device. One of the solutions is to di�use
the light sources before entering the dome. In the experiment four 250 watts bulbs
where placed at the corners. In this way there should not be predominant directions
of light. The dome is opaque to avoid light entering downward. The camera is placed
at the top of the dome using a hole as small as possible.

To work with applications that request a very sensitive ability to deal with colour
di�erences, the main point is to get the surface illuminated as much homogeneously
as possible. If a constant colour surface is acquired and there are high di�erences
among pixels all over the image, colour processes will not be reliable. We tested the
con�guration on �gure 2.2 to its spatial light homogeneity. Figure 2.3(a) is a 3D
display of the intensity level of the red channel of a constant very light brown tile. It
should be noticed that there are signi�cative di�erences between the corners of the
acquired image. The di�erences on the corners of the image are ranged from 4% to
6% of the dynamic range of the camera used in this experiment. Another e�ect of
the dome lighting con�guration is that it appears a hole in the centre of the image



2.2. Camera architecture 13

(a) (b)

Figure 2.3: Lighting non-uniformity for matrix camera acquisition. (a) a sample

acquired using schema 2.2 (b) is a 3D representation of the red channel of a constant

colour surface.
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Figure 2.4: Lighting non-uniformity for matrix camera acquisition. (a) is the pro�le

of one of the columns of a white surface. All channels should maintain its ratios

between them on the whole image. (b) is a diagram of the set of prism to guide the

light to the respective CCD of a 3 CCD colour camera. (c) an curious result where

the pro�le run parallel when plotting upside down the green response.

that corresponds to the hole in the highest point of the dome where the camera lens
is placed.

Apart from the lighting conditions, other problems are derived from the use of
a matrix camera. When acquiring a constant colour surface it is expected that the
relationship between channels remains unchanged across the image. There might be
changes in the intensity level but, even in this case what is red (or any other colour)
should be seen red in any place of the image. We tested two cameras (Sony XC{003P
and an equivalent JAI M{90) and both of them behave wrongly. Figure 2.4(a) plots
the red, green an blue pro�le for a certain column of an image of a white surface.
While red and blue channels go by parallel, the green channel crosses both of them.
The top of the image looks like more reddish than the bottom that looks like greenish.
We tested the light changing the position of the bulbs and the behaviour remained
the same. The lens was also tested having no change on the pro�les. Although it is
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Figure 2.5: Lighting architecture for line scan camera acquisition.

not documented it seems that the reason could be a combination of the prisms used
to direct the light to the CCDs and the CCD themselves (�gure 2.4(b). A very small
de{correlation between the prism and the corresponding CCD changes the behaviour
dramatically. But, all in all, what it is more astonishing is the fact than when plotting
the vertical pro�les of the red and blue channels in the correct way, but the green
upside down all the pro�les run parallel, as shown in �gure 2.4(c). It seems that the
green prism has been calibrated in the inverse way that it had should be done. No
camera manufacturer has reported such problem. However, this is a point that can
not be con�rmed and what we can do is to correct this defect or to avoid 3CDD colour
cameras presenting this problem.

2.2.2 Lighting for a line scan camera

All the homogeneity problems derived from the use of matrix array cameras could
be eluded changing the camera architecture to a linear array one. The basics of the
camera are the same except that what you acquire in each step is only one line. This
makes a lot of di�erences when designing the acquisition system. The �rst problem
is that the signal from the camera is not as standard as a matrix camera. It involves
more complex and more expensive frame grabbers. Supposing that it is a minor
problem let us concentrate on the architecture of the system and the methods to
make it work. Although most of them can be easily deduced, it is worthwhile to
comment some of them here.

This new architecture will always need a conveyor{belt or any similar mechanism
to make the inspection scene run under the camera, an example of a typical design
is presented in �gure 2.5. Therefore, it is one of the solutions for those applications
where the target can not be stopped or it is a non{end production line. But what it
is of interest to a surface inspection system is the fact that only one line is acquired
at each frame. This is a great advantage when designing a homogeneous lighting
system. Instead of worrying about getting a rectangular homogenous{lighted area it
is only necessary to achieve a thin homogeneous light strip, which is simpler. There
are several manners to do this:

� The �rst option we have considered is the use of a line optic �bre connected to
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(a) (b)

Figure 2.6: Lighting architecture for line scan camera acquisition.

a light source, as can be seen in �gure 2.5. The type of light source will be an
important choice. We have considered two options:

{ A tungsten halogen lamp is the most common choice, but its spectral
colour distribution has taken di�erent problems. This lamps has a colour
temperature of 3200ÆK, that is a very reddish light. Considering that
digital cameras without any IR �lter tend to have much more sensitivity
on the red sensor than on the other two, we needed to use a set of blue
�lters that makes to loose a great amount of light, and you need to increase
the number of light sources in four times.

{ A second option was the use of a metal halide lamp. This type of lamp is
used by professional photographers when they want to simulate indoor sun
light. It has a colour temperature around 6000ÆK, that is a bluish light
that does not increase red sensitivity of sensors and there is no need to
add more light sources. Furthermore, its life is 5 times the life of tungsten
halogen lamps.

Following with this architecture, when using an optic �ber line light the light
beam is not parallel but spreads as a cone, like the diagram of �gure 2.6(a). In
this way a great amount of light is wasted, and considering that the aperture of
the optic should be as much closed as possible for increasing the depth of view
this is an important factor in the �nal design.

Moreover, line scan cameras work at a very high frame rate which translates to
a very short exposure time interval and so more light is needed. To solve this
problem we can use a lens to focus the light beam wherever we like as in the
�gure 2.6(b). This schema was also used in [83]. One more point to take into
account in this architecture is the distance of the sample to inspect to the lens.
Ideally it should be at a distance h from the lens to maximise the amount of
light available, where h is the focus distance of the selected lens. Nonetheless,
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(a) (b)

Figure 2.7: The patterns used to calibrate a line scan camera. (a) pattern used to

align the array sensor and the transporter device, and to focus the optic system. (b)

simple pattern to guide the synchronisation of camera an conveyor{belt.

this is not the correct answer. The line acquired with the camera is very narrow,
and if the light beam is very thin then it would be very diÆcult to maintain a
constant illumination all over the line. Therefore, the sample should be placed
at a distance h0 smaller than h. As smaller the h0 the easier will be getting
a homogenous illuminated surface and the darker it will be. The best h0 will
depend on each single application.

� Another option is to use white light emitting diodes arrays. The LED array
is a very long life system but is must be build ad hoc for each problem. In
such a system each diode should be controlled individually to equilibrate the
amount of light on the line. We do not know of any commercial system with
these characteristics.

� One more 
exible solution is the use of 
uorescent lamps that have the incon-
venient of its low lighting power. This is solved by using special lamps that do
not coat a small strip of the glass. Thus, the light in this strip is more intense
and can be directed to the sample. This solution is the one that is currently
working in laboratory conditions.

In the preceding section it has been noted that some arti�ces have to be used to
align, focus and synchronise the line scan camera. The methods most widely used
and that we have applied to our inspection line are explained below.

Aligning and focusing a line scan camera

The �rst step once the camera is set up for acquiring is to align the sensor array
with the conveyor{belt. It is an operation that on most cases must be done in static
mode. While in the case of matrix array cameras what we will acquire is exactly the
scene under inspection and it can be easily tested for focusing, in the case of line scan
cameras we do not have this intuitive feedback. It is diÆcult to understand what you
are seeing when only one line of the scene is visible. To �x this obstacle we use a very
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simple line pattern (�gure 2.7(a)). It is very useful not to use a �xed pattern but
a set of patterns from coarse to �ne. In a �rst moment the coarsest one is used for
an initial con�guration, then the pattern is changed for a �ner one until the desired
precision is achieved.

The second step involves setting up the optics focus. In fact it could be done at
the same time that aligning is done. Some manufactures suggest using an oscilloscope
to monitor the output signal from the camera. This approach needs some skills on
electrical engineering and is not very intuitive because, apart from the sample acquired
signal, there are electrical signals as line{transfer, back porch, end porch, etcetera that
make diÆcult its interpretation. One simple way to do it is to plot the pro�le of the
response of one single line from the image acquired. The steeper the changes are in
the transitions between white and black the more focused image we get. This step
can be automatised by any auto{focus process as for example, maximising the energy
from a contour detector.

Synchronising a line scan camera

The last problem is to make the pictures have a 1:1 spatial ratio, i.e: they should
maintain the proportion of the real scene. The best way is to use an encoder to
synchronise the speed of the conveyor{belt with the line rate of the camera. Sometimes
it is not possible, diÆcult or unnecessary because the speed is always maintained
constant. In these cases an initial set up is essential. It could be �xed using a known
simple geometric pattern as a cross, like in �gure 2.6(b). The extreme points of the
cross are detected by means of morphological operators (for example: hit or miss

operator) or blob analysis, and the ratio between the vertical and the horizontal line
length evidence whether the line rate should be augmented (or conveyor{belt speed
down) or viceversa. This is an iterative process until the following ratio is 1.

R =
horizontal line length

vertical line length
;

synchronisation action =

8<
:

increase line rate if R > 1
decrease line rate if R < 1
no action if R = 0

2.3 Temporal stability

In 2.1 we have commented the e�ect of the temperature on the dark �eld current
intensity, hence whichever it is the camera architecture we have to test the temporal
stability of the whole system, camera, optics and lighting. What we have done is to
take images of an homogenous sample every 5 minutes until the system stabilises.
We tested two con�gurations to know which part of the system is more sensitive to
the warming up. In the �rst case (�gure 2.8(a)) the camera and the light had been
switched on at the same time when they are at ambient temperature. In the second
case (�gure 2.8(b)) the camera was warmed up for two hours before turning on the
light. The tests show that the e�ect is more intense when the camera is cool, but it
is more lengthy when the light that is not warmed up. The camera needs one hour
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Figure 2.8: Stability of the acquired signal. (a) Evolution of the signal when

switching on the camera and the light at the same time. (b) evolution of the signal

when the light is turned on after two hours the camera has been switched on.

approximately to become thermally stable whereas the light needs up to two hours.
In any case the maximum of these times will be the warming up time. Although other
cameras and illuminations have been tested, the case shown as an example is on a
TVI lines scan camera with halogen tungsten lamp. The times may vary if camera or
lighting is changed. In each particular case this test has to be done.

2.4 Discussion

As a conclusion we want to note the importance of the dark current signal calibration
in any industrial application with high colour (or gray) detail needs.

On the other hand, we think it is advisable to use a linear camera whenever it is
possible because of its ability to deal with uniform lighting and avoiding transversal
colour aberrations of some 3CCD matrix cameras.

However, the use of linear cameras involves some extra work to be done. More
tricky methods are needed to focus the image, and additional hardware or extra
methods have to be designed to synchronise the whole system.

As the last point to mention is the necessity of a pre{warming time to assure the
correct operation of the system, especially when most of the calibration processes are
done at the launch of the inspection (or whatever task) system.



Chapter 3

Colour constancy for inspection

problems

In this chapter we introduce the phenomena of colour adaptation and some of the

approaches to computational resolution. It is fundamental to take it into account in

an inspection system where reproducibility is basic. As the method used needs to

assure that camera sensor responses are independent, we show the result of the exist-

ing literature to transform a set of sensor that do not have to hold these properties

to ones that they do. Finally, we explain the problems on assuring a temporal and

spatial constancy of the colour representation and the approach adopted in our case.

3.1 Introduction

Colour constancy is one of the phenomena that human vision system performs when
processing a visual stimulus from a scene of the real world. It is also called colour
adaptation in the psychophysics �eld. It can be de�ned as the ability to perceive the
same colour perception from a given surface even with changes in the illuminant [30].
As an example, suppose the daylight scene of �gure 3.1(a) has been taken with a blue
�lter. The result will be an image like the one in �gure 3.1(b). In both cases the
visual system perceives the top of the woman to be yellow. In fact if we superimpose
the woman's shirt of the second image over the shirt on the �rst image (�gure 3.1(c))
we will perceive it as green. In computer vision, there are many situations where light
changes and so does the stimulus acquired. If the goal of the vision system is to deal
with colour information of the scene, colour constancy is a major issue. A lot of work
has been done and is being done in this subject. There are various approaches to the
problem for di�erent conditions and using di�erent methods. Some of them will be
summarised in the next section.

The work done in this �eld starts from a speci�c model of colour image formation.
In this process there are three main elements, which work together to compose a
colour representation. These are the surface being seen, the light under the surface

19
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(a) (b) (c)

Figure 3.1: Colour constancy example. (a) a scene taken with daylight. (b) sim-

ulated blue light of the same scene. In both case the woman's top are perceived as

yellow. (c) this is the original scene mixed with the shirt in the second image. In

fact, the top on the second one is green although the perception is di�erent.

is seen, and the device used to see the surface. The equation that models the colour
formation is

�kx =

Z
w

Lx(�;�)R
k(�) d� k = 1; 2; : : : ; p (3.1)

Lx(�;�) is the spectral power distribution emitted by the surface at a certain location
x, Rk(�) is the spectral sensitivity of the k-th sensor of the receptor, �kx is the response
obtained from the position x on the scene for the sensor k, and w is the visible
spectrum. In the Visual Human System there are three types of sensors and so it
is called a trichromatic model([117]) or Young-Helmholz theory, but there are many
other possibilities. Some animals can see in 4 basic colours whereas others can only
see in 2 or 1 colour. In computational vision p also may vary. It is the case of gray
cameras or multi-spectral band cameras, normally used in remote sensing. As our
purpose is the analysis of colour surfaces we will use the trichromatic model and set
p = 3.

We will consider the dichromatic re
ection model introduced by Shafer [92] to
model the interaction of light with a surface. In short, it states that for a certain
location x, L(�;�) = Ls(�;�) + Lb(�;�), where � de�ne the geometry of the light,
the surface and the sensor. Ls(�;�) corresponds to the specular light emitted by the
surface, and can be omitted if we can guarantee that it will never occur. When using
controlled conditions this is the case, and we will ignore it in our study. In these
conditions such con�guration is called the Lambertian di�usion model. Lb(�;�) is
de�ned as the light that is not absorbed by the body (surface) and will cause a certain
colour stimulus to hit the sensor. It can be divided into two factors:

Lb(�;�) = mb(�)cb(�)
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where mb(�) captures all the geometric information and cb(�) the physical properties
of the light and body. If we use an homogeneous illumination all over the scene, for
practical usage mb(�) can be ignored, and consequently we have cb(�) = I(�)S(�),
where I(�) is the light spectral power distribution and S(�) the surface re
ectance.
At the end, equation 3.1 can be rewritten as

�kx =

Z
w

I(�)Sx(�)R
k(�) d� k = 1; 2; : : : ; p (3.2)

where the colour representation of point x on sensor k is given by the incident light,
I(�), the re
ectance of the surface at this point, Sx(�), and the sensitivity of the k{th
sensor, Rk(�) at every single wavelength.

3.2 Basis of computational colour constancy

We will describe the colour constancy general basis that apply on most methods.
The aim of computational colour constancy is to get a representation of the acquired
stimulus as it has been acquired under a known illuminant. This de�nition does
not include those methods that reach constancy obtaining a representation invariant
to colour and/or intensity light changes. This representation can be quite abstract
without an evident human interpretation. Inspection system are more concerned with
the �rst set of methods as their intention is, usually, to reproduce the same conditions
in the whole inspection process. However, in some restricted situations the second
class could be a good solution and it will be explored in this work later on. The general
approach in both cases is based on Grassman's Laws of additive colour mixture and
they are the basis for most of these methods:

First law: any colour, c, can be matched by a linear combination of three primary
colours if none of those three can be matched by a combination of the other
two,

c = �R + �G + 
B

where R,G and B are the primaries and �, � and 
 are the amount of the
respective stimulus to obtain c. R,G and B do not stand for the usual red, green
and blue camera system. They could be any whereas they ful�l the independence
restriction.

Second law: when mixing two colours, c1 and c2, the result can be matched adding
together the mixtures of the primaries that individually match the two initial
colours,

c3 = c1 + c2 ^

c1 = �1R+ �1G + 
1B ^

c2 = �2R+ �2G + 
2B =) c3 = (�1 + �2)R + (�1 + �2)G + (
1 + 
2)B

This law holds for any number of colours.
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Third law: the colour matching holds under changes on luminance conditions,

�c3 = �c1 + �c2;

that is, when changing the illuminant, all colours will vary proportionally.

These laws are valid when working with an additive colour system, as it is the
Human Vision System and colour cameras under some conditions. A necessary con-
dition for a camera to hold the additive colour mixture properties is to disable any
automatic settings. Specially gamma correction that introduces an exponential fac-
tor, which breaks the linearity properties of the model. The use of the Grassman
model of colour mixing makes highly convenient the use of digital cameras against
the analog ones. The main reason is that most of the frame{grabbers perform colour
manipulation in digitalising the signal, as for example conversions to the PAL system,
etc.

Since Grassman's Laws assure linear properties of colours, colour representation
can be modeled by linear algebra. By these properties, given an acquired stimulus si

under a certain illuminant, and the same stimulus under the illuminant taken as the
canonical one sc, the transform can be written as

sc =Gisi; (3.3)

where bold symbols denote vectors when lowercase and matrices when uppercase.
Both stimulus are trichromatic stimulus and Gi is a full 3�3 matrix representing the
linear transform between the canonical illuminant and the illuminant on the scene.
Many of the methods we will review in this section simplify the use of a full matrix
by a diagonal matrix. It is widely accepted that this assumption is enough for an
approximate solution [38]. Thus the equation 3.3 does not hold the equality,

sc � Disi: (3.4)

When using the 3.3 equation model, methods will be called full linear transform
models (FTM), and when follow equation 3.4 they will be called diagonal transform
models (DTM). The diagonal model was �rst proposed by von Kries as a model for
human adaptation. Although it had been some controversial discussion about its
validity [114], it has been revisited and now is a widely accepted approach [38]. Most
of the colour constancy methods can be viewed as reformulations of the von Kries
model.

The computational approach to colour constancy is usually broken in two pro-
cesses. The �rst one implies to estimate the illuminant information and the second
process to use the precedent process to transform the response of the camera to inde-
pendent illuminant descriptors. The methods di�er on how the illuminant parameters
are extracted and related to an independent illuminant representation. The following
sections will enumerate and brie
y describe some of these methods. This is not an
exhaustive review of colour constancy and many other taxonomies can be done, and
it is based on the work of Barnard [6] . The methods presented are those that we
consider most representative or have been widely used in computer vision.
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3.3 Direct transform based methods

In this section we will describe two methods of colour constancy that work on the
ratios between the observed measures and the canonical descriptors. We call them
direct transform because they are based on a simple processing step to infer the
illuminant.

3.3.1 Grey world

This is considered the simplest approach to the colour constancy problem. It is based
on a calculation of a single description for the whole scene. It assumes that lighting
is uniform all over the scene and uses an statistical descriptor to discount the e�ect
of the illuminant. It assumes a physical model where scenes in real world are grey
in average, what is called the grey world assumption. From this point, the obvious
statistic is the mean of the image for every channel as a descriptor of the illumination
changes. That is, if there is a change in the colour of the light with respect to daylight
(under it the scene should average to grey), the di�erent channel means will be the
correction ratio.

This de�nition does not take into account the luminance, as the grey could be
thought to be from very dark to very light, being all of them di�erent grades of grey.
As an example, if we de�ne our world to be an average grey, we could think the
statistic descriptor as the response to a stimulus of 50% of a pure white. Using the
diagonal model an (r; g; b) response will be transformed to (r=2mr; g=2mg; b=2mb)
where mx is the mean of channel x. The grey world assumption is very restrictive,
even in the case that it holds for a given scene this does not guarantee that it holds
for all regions of the scene. The method will act di�erently when applied to the entire
scene or to its parts.

3.3.2 Retinex method

The main work of this method is presented by Land in [65]. It was initially conceived
as a computational theory of human vision, but it has been applied on computer vision
as well. The method assumes that slight spatial changes in the response are due to
changes in the illumination or noise, whereas large changes correspond to surfaces
changes. The idea is to run random paths from each pixel. When following the paths
the ratio of the responses in each channel is computed. If it is near 1 then it is noise
or light change and is set to 1, if not it remains as it is. The ratios are combined
(multiplied) while the path is followed, obtaining at each step the percentage of light
of the starting point that the current point has for a given channel. If the ratio is
greater than 1 at a given point this point is taken as the start of the path, that is,
the maximum luminance point is selected as reference. The ratios from di�erent path
are average and taken as a descriptor of the pixel. In this way a diagonal model is
being assumed. Another approximation is to take the average of the ratios in the
path. To simplify the process logarithms have been used reducing the problem to a
di�erentiation to follow the path and integration to recover the descriptors. When
considering a uniform illumination taking the maximum of the image is also called
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the white patch algorithm or white world because it is assuming that the light colour
descriptor is the maximum of its channel and the method will work if white is present
in the scene. And, when taking the average it is equivalent to the grey world.

3.4 Gamut based methods

Another kind of methods are those based on the observation of the population of image
pixels and their transformation to a plausible non illuminant dependent distribution.
In other words, all the pixels values of an image at the same time are considered to
be plausible only under a restricted set of illuminants. If the values of all possible
surfaces are known for a speci�c illuminant, a suitable transform between the plau-
sible illuminants to the canonical is calculated. The set of all possible tristimulus
representations for a certain imaging system (camera, scanner, printer, monitor,...) is
called its gamut. When we are acquiring an image its gamut is associated to the scene
illuminant. For example, we will not get strong red response if the light is blue. The
way gamuts are processed and the guess about the best transform is the di�erence
between these methods.

3.4.1 3D gamut

Forsyth was the �rst author introducing a gamut based method in [40] , the idea
behind his method is very intuitive. Once the canonical illuminant is �xed the set of
all possible rgb observations is calculated, this will form the canonical gamut. The
pixel values from an input image acquired under an unknown illuminant form an ap-
proximation of the gamut of this illuminant. Following the colour additivity law it is
not possible to obtain a colour outside the convex hull of the gamut. It permits to
simplify the complexity reducing the gamut to its 3D convex hull. Then all plausible
mappings that make the unknown convex hull gamut polygon to lie inside the canon-
ical are computed and considered. Although working with the convex hull instead of
the complete hull reduces the algorithm complexity, the fact that the transform has
9 freedom degrees (it is an FTM) implies a large number of possibilities. The author
reduces this complexity using a diagonal model. This variation is named CRULE
algorithm. The method has an important weakness; it is based on the assumption
that the light is constant all over the image. When light varies within the image the
results are poor.

3.4.2 2D gamut

The weakness of the above method drove Finlayson to modify the CRULE algorithm
[34]. The idea is to simplify the model transforming the 3D convex gamut to a 2D
convex gamut. The way to do it is with a perspective transform. A point in the 3D
space (r; g; b) is transformed to (r0; g0; 1) = (r=b; g=b; b=b), and the third component is
omitted. With this transform the new 2D space is independent of intensity changes
of the light. He demonstrates that this representation can be used to apply the
CRULE algorithm. From the set of all plausible transforms the one that maximises
the colourfulness of the solution is selected. Other selections, like the mean illuminant
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of all plausible illuminants are considered in other works. This leads to observe some
incongruities in the selected illuminant.

In [32] this work has been revisited reversing the 2D gamut to a 3D gamut over
the plane b = 1 and taking the mean illuminant and its corresponding transform in
the 3D space.

3.4.3 Statistical gamut

The idea of plausible illuminants from the pixels in the image is in the core of a
statistical approach of the gamut{based approach presented in [33]. It follows a voting
mechanism �lling a table with n columns indicating n illuminants and m rows, one
for each descriptor. Each descriptor is a value in the two-dimensional chromaticity
space. In short, a position in the matrix will be set to 1 if the respective chromaticity
coordinate is plausible from the corresponding illuminant, it will be set to 0 otherwise.
Then, each chromaticity point of the image will increase the associate counter of an
illuminant if this observation is possible with the corresponding illuminant. The
illuminant/s with larger number of votes are selected as the plausible illuminants of
the scene.

3.5 Other methods

There are many methods that do not �t in the previous sections, and among them
there is the well{known Maloney{Wandell algorithm. It is important for the way they
approach the colour constancy problem, and it will be presented separately here for
its elegant mathematical development.

Other methods that broach the problem from other perspectives are based on:
Neural Networks [18], image specularity [28], bayesian approaches [14], illuminant
spectra recovery [76], etc.

3.5.1 Maloney-Wandell algorithm

In the work by Maloney and Wandell [72] a linear method with rigourous mathemati-
cal posing was introduced. The main idea is to approximate re
ectance and illuminant
by a linear model of n� 1 and n dimensions respectively, being n the number of sen-
sors. The method search for a transform of the n�1{dimensional space of re
ectance
descriptors to the n{dimensional space of sensor responses. This transform will yield
an hyperplane in the nD space passing through the origin whose orientation will de-
scribe the ambient light. The process is to derive the hyperplane from the responses
of the image to estimate the vector that describes the illuminant and to calculate the
inverse transform from nD to n�1D giving a set of surface descriptors. When applied
to camera sensors, n is 3 and so the surfaces are described in a 2{dimensional space,
which is not suÆcient. Despite its elegance the method does not perform very well
because of this strong assumptions in the model.
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3.6 Invariance methods

In this section a set of invariant techniques are enumerated and brie
y described.
Their purpose is not to perform colour constancy but extract some properties in which
intensity or colour of the light are not considered. Although most of the invariance
methods are not colour constancy methods it is worthy to comment them.

These methods transform the input responses to a new representation in which
some kind of invariance is achieved. The di�erence with the previous approaches is
that their purpose is not to recover the image as seen under controlled circumstances
but assure some useful features.

One of the simplest invariants is chromatic normalisation. Each pixel (r; g; b) of an
image is normalised as: ( r

r+g+b ;
g

r+g+b ;
b

r+g+b ), which is an invariant representation
to changes on the intensity of light.

Some other invariants had been proposed as for example the description of each
pixel using a set of ratios between the signal in each channel and the signal in the
respective channel of a set of neighbour pixels. This is useful when considering ob-
ject recognition because its local invariance to changes on light properties. Another
invariance used in image indexing is the angles de�ned by the covariance between
channels of an image. The Frobenius distance is used to compare to distributions. It
is also invariant to change on colour light [37].

Other works exists that consider invariance to changes on the colour of the light.
One of them is to divide the pixel response in a channel by the mean of its channel
on the image. In fact this is the same as the grey world method. So, it can be seen
as invariant method or a canonical recovery method. This invariance and chromatic
invariance has been merged in an iterative process in [31] and it would be used and
analysed in this work.

The methods presented above are not a complete enumeration of colour constancy
or invariance methods. We only have intended to give a brief review of the most
important ones.

3.7 Adapting the camera system to VonKries the-

ory

In section 3.3 we have introduced the use of the diagonal transform model instead
of the full transform model for its simplicity. Although our aim is to use a DTM,
for real applications where an accurate representation of colour can be important, we
want to assure the colour precision. In order to do this and to avoid computing all
the requirements for a FTM, we will transform our acquisition system to fully hold a
DTM. This approach has been proposed by Finlayson in [35].

The starting point of this work is that for a DTM to suÆce to identify the change
of the illumination it has to ful�lR

w
I i(�)Sq(�)Rc(�)R

w
I i(�)Sp(�)Rc(�)

=

R
w
Ij(�)Sq(�)Rc(�)R

w
Ij(�)Sp(�)Rc(�)

8c = 1 : : : 3: (3.5)

where I i and Ij are two di�erent illuminants, Rc is the sensor sensitivity of the c
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channel, and Sq and Sp are two any surfaces. One way to guarantee that equation
3.5 holds is to construct sensors as narrow-band as possible. The ideal case is to be
delta functions, ie: each sensor is only sensitive to one single wavelength. Instead
of constructing narrow-band sensors, the camera sensor sensitivities can be narrowed
by sharpening the spectral curve. That is the same that sharpening their responses.
This is done by a linear transform that is independent of the illuminants. Therefore,
equation 3.4 becomes

T sc � Di
T si (3.6)

where T is the sharpening transform of the original sensor sensitivities. The method
de�ned in the work minimises an expression over a set of three �xed wavelength
intervals. These intervals have to be set a priori. The problem is how to �x them since
they will vary with each di�erent camera. The advantage of the method used is that it
does not take into account the illuminants and surfaces, only the sensor sensitivities,
and hence it is not data dependent. In his analysis [35], a comparison between the
sensor{based sharpening and the data{based sharpening is done. The conclusion is
that the results from both approaches are nearly identical. From this conclusion we
decide to obtain the sharpening transform using the data-based method. In this way,
no guess should be done. The process starts from the observation of samples viewed
under two di�erent illuminants. One of them is taken as the canonical illuminant, the
images will be transformed as they would be seen under it. Two 3� n matrices are
constructed, Sc and Si. The �rst one represents the sensor responses of n samples
under the canonical illuminant, and the second one the responses of the same samples
under another illuminant. Then, using equation 3.6 we have

T
iSc = Di

T
iSi (3.7)

The equality is true if Di is considered to be the least-square solution, which is
obtained byDi = T iSc[T iSi]+ where A+ is the pseudo-inverse Moore-Penrose inverse
(A+ = A0[AA0]�1). Developing this expression yields to

ScSi = (T i)�1Di
T
i: (3.8)

Since the eigenvector decomposition of equation 3.8 is ScSi = UDU�1 and as Di is
diagonal then T i = U�1.

The task to do is to acquire all the samples under the two illuminants of interest.
The number of samples used in [38] was 462 from the Munsell set of colours. This
is a very tedious task, and needs of the Munsell charts. Another way to deal with
data-based sharpening is to do all the development synthetically. The data of the
Munsell spectra and the illuminants spectra are known. To apply equation 3.2 the
camera sensitivities must be known. Supposing that this is the case, applying the
sharpening will be straightforward.

For most of the cases the dealer does not supply sensor sensitivity spectra. Al-
though it was the case, the system optics will change the sensor speci�cations. This
implies that a method to recover the sensor spectral properties is needed.
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Figure 3.2: Macbeth Color Checker Chart used in sensor recovering.

3.7.1 Sensor sensitivity recovering

Fortunately there are various possibilities to do it, a short review can be found in [6].
The most reliable is the use of monochromators. Such devices can emit light on a very
narrow interval of the visible spectrum. Illuminating a white surface and measuring
the camera response the sensitivities can be recovered. This approach was used by
Vora et al in [107, 106],where they recover the sensors of two digital cameras and prove
their linearity. This method is very accurate when is done carefully. The problem
is that devices capable of generating narrow band light at the desired intervals are
expensive and not readily available. Therefore various authors have attempted to
solve this problem without using this equipment [93, 67, 57, 36, 5]. The starting
point is equation 3.2, but as it is a computational approach based on measured data
we need to rewrite it in the discrete domain as,

�kx =

WX
w=1

I(�w)Sx(�w)R
k(�w); k = 1; 2; 3 (3.9)

that implies to know the information for W wavelengths of the visible spectrum.
Usually, it is enough with W = 31. Equation 3.9 in vector form will be

�kx = (~Lx)
0 ~Rk k = 1; 2; 3 (3.10)

where Lx(w) is the energy emitted by the pixel x at the w-th wavelength.
The general idea is to measure a number of input spectra and its camera response

for each sensor from a set of samples. If �k is the responses vector of the k-th sensor
for m surfaces and L an m�W matrix where each row is the spectral response of the
respective stimulus then the problem reduces to �nd the spectral sensitivity of the
sensor as the vector Rk,

�
k = LRk (3.11)

which can be solved by minimising the RMS error, k�k�LR̂kk2. But if m is large
then the method will be analogous to the monochromator method. The intention is
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Figure 3.3: Recovered camera sensitivities without restrictions. (a) are the results

for a 3CCD Sony XC{003P camera and (b) are the sensor sensitivities for a 12 bits

line scan TVI camera.

to make the process as simple as possible and use as few samples as possible. That
yields L to be rank{de�cient because of its dimensionality. The most used samples are
those from a Macbeth Color Checker Chart in �gure 3.2 [77]. It consists of 24 colour
patches representing 18 natural colours an 6 achromatic stimuli. The test presented
here was done on a digital TVI line scan camera and a 3 CCD Sony XC-003P. The
light used is irrelevant because the data used includes it. The spectral measures were
collected using a PhotoResearch PR-650 spectroradiometer. If we try to recover the
sensitivities using the direct approach the results are those in �gure 3.3, where it is
plotted the spectra for all sensors of the Sony and the TVI camera respectively. Is it
obvious that there not exists a camera with such sensors. The expression minimised
is the RMS error of the following set of linear equations:

0
BBB@

�k1
�k2
...
�k24

1
CCCA =

0
BBB@

I(�1)S1(�1) I(�2)S1(�2) � � � I(�W )S1(�W )
I(�1)S2(�1) I(�2)S2(�2) � � � I(�W )S2(�W )

...
... � � �

...
I(�1)S24(�1) I(�2)S24(�2)� � � I(�W )S24(�W )

1
CCCA
0
BBB@

R̂k(�1)

R̂k(�2)
...

R̂k(�K)

1
CCCA
(3.12)

As it becomes under{determined (W > 24) the best �tting can be reached by a wide
range of con�gurations. What the methods do is to impose some constraints on the
solution R̂k of equations 3.12, in order to improve the solution to a more realistic one.
In our work we have used the constraints imposed by by Finalyson et al. in [36], for
being one of the last works on this subject when the problem was set up, and for its
simplicity.

The simplicity of this method relies on the fact that all the restrictions made can
be included in the minimisation problem using quadratic programming which solves
the equation 3.12 subject to a set of q linear constraints:
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a1;1R
i(�1)+ � � �+a1;KR

i(�W ) � b1
a2;1R

i(�1)+ � � �+a2;KR
i(�W ) � b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aq;1R

i(�1)+ � � �+aq;KR
i(�W ) � bq

The di�erent constraints imposed are: positivity, modality and smoothness. Pos-
itivity states that it is not feasible to get a sensor with negative response. The
behaviour of sensors is always additive, never subtractive. Modality comes from the
fact that most of the sensors tend to be unimodal, i.e.: there is a unique peak in the
spectral response. And smoothness from the fact that there are no abrupt transitions
in the spectrum as is the case in �gure 3.3. In the following lines we summarise the
constraints introduced in each case:

Positivity:

Rk(�w) � 0 w = 1; : : : ;W (3.13)

Modality: If we want the peak of the sensitivity to be in the v{th wavelength then
the constraints are:

Rk(�v+1) � Rk(�v) v = 1; : : : ; w � 1 (3.14)

Rk(�v+1) � Rk(�v) v = w; : : : ;W � 1 (3.15)

These constraints should be tested for all plausible v's. In our experiments
we divide the range of spectral response in as many subranges as number of
sensors. Each sensor is imposed to be unimodal with the peak in one subrange.
That is, we approach the k sensor W=p times (p is the number of sensors) with
di�erent locations of the unimodal peak. From these W=p approaches, the one
with minimum error is selected.

Smoothness: To achieve the smooth sensitivity curves Finlayson proposes to ap-
proximate the sensitivities to a set of Fourier basis:

B1 = c; B2 = sin(x); B3 = cos(x); B4 = sin(2x); B5 = cos(2x); � � �

and combining them following the equation:

Ri = �1B1 + �2B2 + : : :+ �lBl

taking c an arbitrary constant (i.e: c = 1) and x = (� � �min)�=((�max �
�min)=2), for � = �min � � ��max. Then the problem is to �nd the vector �k that
minimises

kLB�k � �kk2
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Figure 3.4: Recovered camera sensitivities with positivity, modality and smoothness

constraints. (a) are the results for a 3CCD Sony XC{003P camera and (b) are the

sensor sensitivities for a 12 bits line scan TVI camera.

the matrix equation involved in this minimisation and equivalent under this
formulation to equation 3.3 is:0

BBB@
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�k2
...
�k24

1
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= L

0
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To impose positivity and unimodality to this approach the constrains have to
be reformulated, and we can write

Rk(�v) = �1B1(�v) + �2B2(�v) + : : :+ �lBl(�v)

it follows that the unimodality constraints 3.14 and 3.15 are, repectively:

�1(B1(�v)� B1(�v+1)) + : : :+ �l(Bl(�v)�Bl(�v+1)) � 0 v = 1; : : : ; w � 1
�1(B1(�v+1)�B1(�v)) + : : :+ �l(Bl(�v+1)�Bl(�v)) � 0 v = w; : : : ;W � 1

and the same for positivity:

Rk(�v) � 0 � ��1B1(�v)� �2B2(�v)� : : :� �lBl(�v) � 0 v = 1; : : : ;W

With this method the sensor of two cameras were recovered. The spectral sensi-
tivities are shown in �gure 3.4, at the left is the analog 3CCD matrix camera, and
at the right the digital line scan camera. In the case of the matrix camera we do not
have enough information and we can not validate the results. We do not know the
theoretic spectral distribution of the TVI camera but we know the spectral transmit-
tance of the prism used to split the light to the sensors. The results obtained are
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Table 3.1: The relative error on recovering the sensors of two cameras: Sony XC-

003P and TVI line scan camera.

Mean relative error of samples

Camera red sensor green sensor blue sensor

TVI 0.0244 0.0271 0.0310

Sony 0.0570 0.0581 0.0580

congruent with them. Moreover, to test the level of error we get the mean relative
error for each sensor k,

Pn

j=1

�
LjR

k��k(j)
�k(j)

�
n

(3.16)

where Lj denotes the j{th row of the matrix L and n the number of samples used.
The results are presented in table 3.1 for both cameras. The error we have in the
worst case is of 3% in the line scan camera and 5.8% for the matrix camera. Although
it is not perfect, they are quite good results.

3.8 Taking Spectral Sharpening into practice

To take spectral sharpening into practice without having to acquire 462 samples (as
it is suggested in [35]) the solution is to simulate the process. From equation 3.2 we
need to know the spectral power distribution of the light, the spectral re
ectance of
surfaces and the spectral sensitivities of sensors. Now, we know all of them. Surfaces
and light are tabulated and sensors are just recovered. It is immediate to apply
the above equation 3.8 giving us a matrix Si for any known illuminant i. Because
data{based sharpening is conceived as a method of validation of the sensor{based
sharpening some extra considerations have to be done. The method is applied from
a canonical illuminant against another one. To test its validity it should be done
for various pairs of illuminants maintaining the canonical one. When it is done the
resulting transforms, although they are nearly identical they are not the same and
some kind of fusion among them is needed. Let us examine this last point a little bit
later.

The process will be done only for the line scan camera since the matrix camera
is not suitable for accurate colour inspection as explained in section 2.4. The set of
samples are the 1269 ones from the Munsell Book of Color matte samples [22]. The
illuminants used are the CIE standards: A, B, C, D55, D65 and D75. Illuminant A
relates to a tungsten lamp at 2856ÆK and the others to various approximations of the
daylight [117]. We took illuminant A as the canonic and we calculated the inverse of
the eigenvectors for every possible pair SASX where X = B;C;D55; D65; D75. All
transform matrices are compiled in table 3.2. As mentioned previously the results
are nearly identical. However, we need to extract only one transform. The spectral
sharpening algorithm does not take the data-based sharpening as the way to obtain



3.8. Taking Spectral Sharpening into practice 33

Table 3.2: The 3 � 3 sharpening transforms for the TVI line scan camera and for

all the considered illuminants, taking A as the canonic.

A vs B

0
@ 1:014 0:138 0:020

0:081 1:030 0:048
�0:033 0:096 1:005

1
A A vs C

0
@ 1:015 0:129 0:016

0:085 1:029 0:041
�0:029 0:105 1:005

1
A

A vs D55

0
@ 1:014 0:124 0:019

0:084 1:028 0:052
�0:032 0:098 1:006

1
A A vs D65

0
@ 1:014 0:112 0:016

0:087 1:028 0:047
�0:029 0:106 1:006

1
A

A vs D75

0
@ 1:014 0:117 0:015
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Figure 3.5: Modi�ed camera sensor sensitivity to improve DTM. All transform are

similar but not identical. The dotted line is the best �t to all transforms..
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it. Our proposal is to extract the transform that best �ts all the above ones. To
obtain the new spectral sensitivities, given an illuminant X , we only need to apply
the linear transform T X to the sensor sensitivities as in equation 3.6,

(RX )0 = T XR0

where the k-th column of R is the sensitivity of k-th sensor, andRX the new spectral
sensitivities. As an example �gure 3.5 shows the results of the reconstruction of
the middle spectrum channel. The coloured solid lines are the applied transforms.
Now, to obtain the �nal transform we will minimise the RMS error of the needed
transform from the original sensitivities to the mean taken at each wavelengthR, i.e:
to minimise

kR�RT k2

At the end the resulting transform is:

T =

0
@ 1:012 0:123 0:017

0:092 1:018 0:047
�0:031 0:109 0:996

1
A (3.17)

We will discuss the e�ect of the sharpening transform in the �nal system at the
end of the next section.

3.9 Colour constancy for on{line inspection

In chapter 2 we de�ned a hardware system for accurate colour vision inspection, but
some computational e�orts should be dedicated to assure stable colour acquisition.
It is specially important when the underlying application relies on past measures.
This is the case of many industrial processes that maintain a catalog (or they should
do) of their production and the current output is related to it. If the system can
not reproduce the initial conditions then this reference to the past is not possible.
There are several factors that can make acquisition to di�er from time to time. As
an example: the aging of the �lters (if used), the soiling of the optics and lighting
system, small changes on the relative positioning of the triad sample, light and sensor,
etc. All of them can be solved with a periodical maintenance protocol that any
industrial computer vision application must de�ne. Apart from these, there are some
troublesomeness when handling light stability, and they can not be settled by a human
operator:

Non-homogeneous spatial illumination: Due to the use of non homogeneous �l-
ters (when needed) or to optic e�ects the response on the image varies between
locations. The optics introduce an attenuation of the signal when moving around
the image due to geometric e�ects, principally vignetting and a fall-o� propor-
tional to the fourth power of the cosine of the o� axis angle [56]. The vignetting
e�ect is stressed when working with high apertures. These e�ects will always
appear when considering a computer vision system, with the consequent out-
come to make diÆcult to get an homogeneous illumination through the acquired
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Figure 3.6: Light spatial variation: it shows the fall{o� at the edges of the image

due to the cosine{4th law.

image. As we are centred on the use of line scan cameras (see section 2.4) the
e�ect is the same for all the lines of the image, because it is formed joining
lines coming from a single line CCD sensor. An example of a particular con-
�guration of this system and to show the spatial inhomogeneity �gure 3.6 plots
the intensity pro�le of a random line from an constant colour surface. Under
this circumstance no comparison can be made between di�erent regions of the
image, thus testing spatial coherence or methods that apply all over the image
to extract information are not possible, or at least very weak.

Time varying illumination: This is a normal problem on any acquisition system
where a high degree of stability is required in order to do a colour based inspec-
tion. The aging of lamps changes the equivalent colour temperature, and so do
the acquired images. Under this circumstance absolute colour measures (and in
some degree illuminance measures) are not reliable if it is not corrected.

Both cases di�er from its causes and its consequences, but both of them can be
analysed from colour constancy. In the �rst case we want all positions of the image
to be referenced to a known canonical light. In the second case this is also true but
at any time. Our interest is to achieve, at the same time, spatial and time stability.

We will start from the results in section 3.8 applying the matrix 3.17 to all the
image pixels. In this way we can rely on algorithms performing a DTM.

3.9.1 Merging spatial and temporal colour constancy

In the course of our work di�erent colour problems have come to us. All of them
needed to treat the colour constancy problem and di�erent approaches have been
developed that helped us to deal with it.

Firstly we will explain the way we have broached the problem with a surface
inspection problem in mind. Afterwards we present what it was the �rs attempt to
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get an illuminant invariant representation of the image. Although it is not useful for
generic surface inspection it demonstrates good capabilities to solve the variability
conditions when only chromatic segmentation is needed.

Diagonal transform approach

We will now assume that diagonal transformmodel suÆces to cope with the problem of
colour constancy. Afterward, we will add the sharpening transform we have computed
in the previous section. Then for the moment we will assume the use of a DTM as
being absolutely reliable.

The diagonal matrix has been computed by using a constant colour pattern sample,
C that is acquired periodically. This forms a set wt of reference images, where t stands
for the time they are acquired.

As we have mentioned above, we need to compute space and time corrections. We
will do these two corrections in separate steps:

1. The �rst step is to correct the spatial distortions of C. The distortions, due
mainly to optic e�ects and uneven line light, can be modeled by a set of diagonal
transforms fSxg, that is, one diagonal 3 � 3 matrix for each x position along
the x axis, where the spatial variation occurs. For each triad of photo{sensors
(photogate) of the CCD we will calculate the corresponding DTM.

2. The second step is to correct light variations due to time. They will be corrected
in a similar way. We calculate another set of diagonal transforms, fTti

x g, which
models the changes at time ti with respect to instant t0, resulting in a temporal
DTM.

Now, we can attack the problem separately, i.e: to de�ne fSxg and fT
ti
x g, and

then we will merge both sets in a single set of DTM.
In order to extract the diagonal transforms fSxg, we �x a canonical colour de-

scriptor of C, wc, which is the rgb vector that will represent the canonical colour of
the reference pattern, C. Its value will be derived from the �rst acquired reference
pattern at time t0, denoted as wt0 . We want to transform each triplet wt0

x to the
canonical descriptor, and use this transform for the subsequent images.

Changes in colour representation can be due to intensity or chromatic changes on
the illuminant. The former is constant for all channels and the latter can vary for
each channel. In a line scan camera all the pixels on the same column came from the
same spatial position, that is all of them have the same illumination conditions. For
a given column x, these conditions are de�ned by a constant sx representing intensity
changes and a matrix, Cx, for the chromatic changes.

Considering this separate model of illuminant changes we can de�ne wc as follows:

wc = st0x C
t0
x w

t0
x ;

where wt0
x is the rgb vector at position x of the white reference image, as well as,

sx and Ct0
x represent the shading factor and the diagonal light colour transform,

respectively, for the x image position. We have to recall we are assuming a speci�c
transformation for each image column, given that we are working with a 3CCD line
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scan sensor. As we do not need to know sx and Ct0
x separately we can rewrite the

expression as:
wc = Sxw

t0
x

and, from it, it follows that:

(Sx)kk =
(wc)k

(wt0
x )k

8k = 1 : : : 3 ; (3.18)

where (Sx)kk is the lighting and colour correcting factor for the sensor k and (wt0
x )k

is the k channel value of the x pixel on the initial reference image at position x. At
this point, wc has not been de�ned yet. As our objective is to have all images in
terms of a canonical descriptor, and which is the descriptor is not relevant, we choose
it as the mean value on each sensor:

(wc)k =
1

N

NX
x=1

(wt0
x )k : (3.19)

Substituting equation 3.19 in 3.18, we obtain the set of spatial DTM fSxg. The
following step is to compute the diagonal transforms fTti

x g. Doing the same reasoning
as in the previous step, that is, assuming the same lighting model we can write

wc
x = stixC

ti
xw

ti
x :

In this case the descriptors we want to refer to are the rgb values of the reference
pattern C at time t0. We are transforming the outputs of the camera to those that
would be obtained at a reference time. As we are not doing spatial correction, the
transform is applied to each individual element of the reference array. Because wt0

is the �rst known output from the camera, it will be taken as the reference time. We
can rewrite the expression in a compact style as:

wt0
x = Tti

xw
ti
x ;

and for each channel, k, of the image we have

(Tti
x )kk =

(wt0
x )k

(wti
x )k

:

Now what remains is to extract a single set of diagonal transforms from the spatial
set and the temporal set, Sx and Tti

x respectively. The process is depicted in the
following schema

Sx
wc  � wt0

x

SxT
ti
x-

x?? Tti
x

wti
x

Finally, what we need to do is to combine both transformations on the acquired image.
Given the rgb vector px from the position x of an image taken at an instant t where
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(a)

(b)

Figure 3.7: Test of the DTM colour correction approach. (a) are the original

image, the cluster image of pixels belonging to class 1, and the cluster image of pixels

belonging to class 2 when no correction is performed. (b) is the same con�guration

but using the spatio{temporal DTM.

ti < t < tj , being ti and tj the times when two consecutive white reference images
have been taken, we can express the canonical descriptor of px as

pcx = SxT
ti
x px ; (3.20)

being pcx the descriptor vector of px that is illuminant independent. The �nal set of
diagonal transforms fDti

x g are D
ti
x = SxT

ti
x , thus

(Dti
x )kk =

(wc)k

(wt0
x )k

(wt0
x )k

(wti
x )k

=
(wc)k

(wti
x )k

: (3.21)

As a test we used a sample of a ceramic tile with a random isotropic texture.
Once the correction is done we apply a k{means clustering algorithm with k = 2 to
get two di�erent images. Brie
y, this algorithm groups pixels by its colour similarity,
it will be explained later in section 5.2. Since the texture is randomly distributed
it is supposed to have the same amount of a certain colour in each column of the
image. If the colour correction is correct the segmented images should be spatially
homogeneous. The results on �gure 3.7 con�rm that point. The top row of the �gure
presents the origianl image without any correction, and the corresponding segments
of two di�erent colours. In both segments we can appreciate the e�ects of the spatial
non{homogeneity on the segmentation. These images are very conclusive, but it can
be seen more intuitively in �gure 3.8. Each graphic plots the percentage of pixels in the
respective column belonging to the �rst or second segment. Because of the properties
of the texture, all columns have similar amounts of particles of each colour. Thus,
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Figure 3.8: DTM colour correction. The image is segmented in two clusters and the

cumulative pro�le for each cluster is computed ((a) and (b)). The red lines are the

results for the uncorrected image and the black line are the colour corrected results.

the resulting pro�le should be almost 
at except for small variations. If this pro�le
is not nearly constant is due to non uniformity of the light and optic system, which
correspond to di�erent colours along the line sensor. In (a) and (b) the results of
the cumulative pro�les for both segments respectively are plotted when applying de
DTM approach in black, and without it in red. It is clear that the process is a must.
Temporal stability is also tested and the pro�les obtained are practically the same.

Up to the moment no sharpening transform has been applied. The last step is to
extent the colour correction to the sharpened responses of the camera as it has been
explained in section 3.8. To do this the rgb outputs from the camera are multiplied
by the transform T in equation 3.17.

We have measured the di�erence between the colour correction with and without
this sensor sharpening for a line scan camera. The error between both transforms is

Ek =j IkD � IDT
k j

where k is the channel being analysed, IkD is the corrected image using the diagonal
transform model, IDT

k denotes the correction applying Spectral Sharpening. The Ek

means were 0.13%, 0.11% and 0.06% in the red, green and blue channels respectively
for a set of 274 images with di�erent colour distributions. The changes in illuminant
are not dramatic but are the real conditions in a industrial inspection problem. The
standard deviations were 0.01%, 0.009% and 0.005% that means that the obtained
coeÆcients are very stable. These small di�erences evidence the good properties for
colour constancy of the camera sensitivities, which are quite narrow band.

Colour normalisation approach

This approach is based on the change of representation of the colour space, eliminat-
ing the information that is not referring to intensity and colour of light. This is a
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(a)

(b)

Figure 3.9: Test of the column comprehensive normalisation. (a) are the original

image, the cluster image of pixels belonging to class 1, and the cluster image of pixels

belonging to class 2 when applying the original method. (b) is the same con�guration

but using the modi�ed version. The second case has no agglomerative areas.

work based on the Comprehensive Normalisation of Finlayson presented in [31]. The
comprehensive colour normalisation is an iterative algorithm, which tries to remove
shading and light colour, successively. One of the assumption of this normalisation
is that light colour is constant all over the scene, thus, given an image of N �M
pixels, represented as a NM � 3 matrix, I, where rows are rgb values of a pixel, the
normalisation is computed by considering an iterative process

I0t+1 = DsI0tD
c ; (3.22)

where Ds is a NM �NM diagonal matrix that represents lighting geometry of the
image, and Dc is a 3� 3 diagonal matrix assuming a diagonal model for the colour of
the illuminant. The iterative normalisation tries to remove the factors introduced by
Ds and Dc, by transforming the image to its chromatic coordinates, and �xing the
magnitude of the image channels, respectively.

Given that, we can not assume that the colour light is exactly the same all over
the image, we have introduced a modi�ed version of this algorithm. As we have
already commented, the N �M images from a line scan camera are formed from a
3CCD sensor array of length M , then all pixels of the same column come from the
same sensor and the same point light source. We made use of this fact to modify the
algorithm. Instead of normalising the entire image, it is split into M sub{images, one
for each column. These images are separately normalised and merged again.

This column-comprehensive normalisation allows avoiding spatial illuminant vari-
ations that can be important to get a good starting point for an inspection system.
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Figure 3.10: Colour normalisation correction. The image is segmented in two

clusters and the cumulative pro�le for each cluster is computed ((a) and (b)). The

red lines are the results for the Comprehensive Normalisation and the black line are

the modi�ed version of the colour normalisation.

However, it presents some problems on speci�c applications where the lightness is
an important cue for the inspection. Comprehensive colour normalisation removes
lightness reducing the image to its chromatic information. Those applications that
are concerned to relative chromatic content are candidates to use this approximation.
A variation of this approach has been used to calibrate colour acquisition in a real in-
spection environment [104, 9, 8]. But, in most cases this is not enough, and lightness
should be corrected together with chromatic information.

We used the same test to compare the results from the original Comprehensive
Normalisation and the modi�cation that we suggest. Figure 3.9(a) is the result of
applying this process with the original comprehensive normalisation, at the left the
original image and at the middle and right the masks of the cluster images. The real
values are not shown because the nature of the normalisation is not intended to give
a visually interpretable space. In �gure 3.9(b) the same process is applied with the
modi�ed version of the colour normalisation. It can be perceived that the second case
results in a more distributed segmentation.

Figure 3.10 shows the results for the two segments of the example. It is the
comparison between colour normalisation and the proposed variation. Although the
images depicted in �g. 3.9 are visually very similar, there exist spatial variation
when using the original form of the Comprenhensive Normalization. The column
normalisation comes to be very stable.

3.10 Discussion

We have made a concise introduction to computational colour constancy methods,
with the basis of colour formation that explains most of the algorithms intended for
this purpose.
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An obvious and important conclusion of this chapter is that one of the key factors
to succeed in colour inspection based on computer vision techniques, is the need of
some kind of colour correction.

We have de�ned a colour constancy method adapted to a line scan camera. The
method computes a linear transform that combines both spatial and temporal colour
variations. It is based on a diagonal model improved by a linear sensor modi�cation.
When applying sensor sharpening to the line scan camera used in this work, we
realised that it presents very good sharpening properties on its sensors.

As a lateral contribution, we have also modi�ed an existing method of chromatic
invariance that could work in industrial vision and treats both spatial and temporal
variations at the same time.



Chapter 4

Computational operators for colour

texture perception

Most of the previous works dealing with computational representations for colour tex-

ture have been directed to extend gray level representations to every one of the RGB

channels. As we have already seen in the introduction chapter, to deal with colour

texture we need operators that combine co{jointly the spatial and the colour infor-

mation in a way that simulates the especial behaviour demonstrated by the human

visual system. In this chapter we will analyse colour induction as the most important

phenomena that acts on the colour texture perception, and we will propose a com-

putational operator for a perceptual sharpening that allows to complement previous

results on perceptual blurring, providing both a general model for colour induction,

the �rst one in chromatic contrast and the last one in chromatic assimilation.

4.1 Colour Induction

Colour induction is a colour phenomena that changes the colour appearance of a
stimulus due to the in
uence of the scene contents in the �eld of view. In this
category we have to include the colour adaptation phenomena introduced in chapter
3, which is always involved in any scene interpretation. Adaptation models or colour
constancy methods usually are global visual mechanisms.

In this section we will deal with other induction phenomena that depend on the
surrounding colour of a certain stimulus. The surrounding colour is called the induc-
ing stimuli or inductor [116]. Depending on the direction of the chromatic change
provoked by the inductor, we will distinguish two types of colour induction:

Chromatic Assimilation occurs when the chromaticity of the test stimulus changes
towards the chromaticity of the inducing stimulus. An example of assimilation
phenomena is shown in �gure 4.1.(a).

Chromatic Contrast occurs when the chromaticity of the test stimulus changes

43
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away from the chromaticity of the inducing stimulus. An example of this e�ect
can be seen in �gure 4.1.(b).

In �gure 4.1.(c) and (e), we can see a plot of the chromaticity coordinates of the
stimuli presented in images (a) and (b). We denote the test stimulus as TS, that
is, the image region that is a�ected by an inducing surround. These inductors are
denoted as S1 and S2.

In the �rst column of �gure 4.1 we see the e�ects of the assimilation, the test
stimulus moves its appearance towards the appearance of its own surround. The
TS is yellow, and it appears pink when surrounded by S1, that is red, i.e. yellow
moves toward red and becomes pinkish. The same TS becomes greenish when it is
surrounded by S2 that is green.

In the second column of �gure 4.1, we see the e�ects of the colour contrast, the
test stimulus moves its appearance away from the appearance of its own surround.
The TS is grey and it appears yellowish when it is surrounded by the S1 bluish
surround. Complementary, the same TS appears bluish when it is surrounded by a
S2 yellowish surround. In this case, the induction phenomena is behaving inversely as
it behaves in assimilation. Chromaticities of the perceived stimuli are going far from
the surround chromaticity. This phenomena is called simultaneous contrast when it is
given on achromatic images. A typical example of simultaneous contrast or brightness
contrast is shown in �gure 4.2, where the same stimulus seems darker when surround
is lighter and lighter when the surround is darker.

Considering the given de�nitions and examples, it is obvious that any perceptual
approach towards a colour texture representation should take into account the colour
induction e�ects we have introduced above.

In psychophysics we �nd a wide range of works dealing with the induction phe-
nomena or the in
uence of surrounding chromaticities on the appearance of colour
[98, 81, 96, 97, 95, 24, 94, 2, 86, 109, 20, 85, 112, 110]. In all these works, authors
present di�erent aspects of colour human induction measurements. The in
uence
from direct surrounds or remote inducers, the asymmetry of the measurements due to
changes from luminance or the dependency on spatial frequency of patterns are some
of the aspects that are measured and analysed. Conclusions from all these measure-
ments pursue to give answers about how this perceptual mechanisms are organised in
the human visual system. They help in building a more precise model on how human
visual system acts from the retinal representation of colour to the �nal judgements on
colour appearance. Considerations are done in terms of di�erent physiological aspects
as cone absorption rates and their retinal distribution, optical chromatic aberrations
or the existence of opponent-colour signals in the visual pathways.

The most interesting conclusions from all these works from a computer vision
point of view can be summarised in the two following points:

1. Changes on colour appearance due to the spatial frequency of patterns can be
described by a two-step pattern-colour separable model [85, 109]:

� First step, a colour transformation to a new coordinate space that is in-
dependent of the image content. The best correspondence of the derived
data is given by the opponent-colour transformation.
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(a) (b)
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PT1 PT2
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(c) Assimilation induced by S1 (d) Contrast induced by S1
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(e) Assimilation induced by S2 (f) Contrast induced by S2

Figure 4.1: Colour Induction. (a) Colour Assimilation. (b) Colour Contrast. (c),

(d), (e) and (f) plot chromaticity coordinates of the RGB values of the images (a)

and (b) denoted as given in the below graphics. (c) and (e) Chromaticity moves to-

wards the inducing surround.(d) and (f) Chromaticity moves away from the inducing

surround.
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Figure 4.2: Simultaneous Contrast

� Second step, in the previous coordinate frame, colour representation is
transformed by a gain factor that is dependent of the image content.

2. The relationship between spatial frequency and the two types of colour induction
can be summed up as follows [98, 29]:

� A spatial frequency of 4 cpd. is a transition frequency between assimilation
induction to contrast induction.

� Spatial frequencies at 9 cpd. and 0.7 cpd. assures assimilation and contrast
induction respectively for any inductor.

Frequency measures are given in cpd units (cycles per degree), that represents
the number of cycles for 1 degree of visual angle. The visual angle is a common
way to express a spatial measure that allows to adjust the observer distance and the
displayed window size to di�erent possibilities. In �gure 4.3, we can see coloured
square-wave patterns at di�erent spatial frequencies. These plots are given on image
size corresponding to the diameter of 6 degrees of visual angle when observed at 30cm.
From 0.5 cpd tp 2 cpd we can perceive images with two coloured types of blobs, blue
and yellow. As the frequency increases we tend not to perceive separate blobs but a
global colour that is the result of the two basic colours plus the frequency e�ect.

Considering the above conclusions, we can derive a computational model for colour
texture image representation based on the pattern-colour separable model shown at
�gure 4.4. Where Opp represents the opponent-colour transformation and A� and C

are respectively the assimilation and contrast operators, that represent the induction
e�ects on each colour channel and for the corresponding range of spatial frequencies
in the image. We have also indicated the possibility to insert other special phenomena
that has been referred in the bibliography. A combination step of the resulting signals
is represented by a P transformation.

This model has to allow to derive colour texture properties from the set of per-
ceptually de�ned images. While the perceptual blurring has to allow de�ning global
colour properties, the perceptual sharpening has to allow a better segmentation of
di�erent coloured blobs and the computation of their attributes.
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0.5 cpd 1 cpd

2 cpd 4 cpd

6 cpd 9 cpd

Figure 4.3: Colour Induction at di�erent spatial frequencies. Frequencies are com-

puted by considering observer position at 30cm from the image. Images are displayed

on 6 degrees of visual angle.
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In the next sections we will go deeply on how to de�ne computational operators
implementing the induction operators, but before to do it, we will introduce the
opponent-colour space.

4.1.1 Opponent-Colour Space

The concept of opponent colours was �rst described by Hering in 1878, he made some
interesting observations about some pairs of colours one never sees together at the
same place and at the same time. While we are able to see a reddish or a yellowish
orange, and a bluish or a greenish cyan, we never can observe a greenish red or a
bluish yellow neither the opposite. These two hue pairs, red-green and blue-yellow
are called opponent colours.

From this observation Hering hypothesised the existence of a unique visual path-
way to encode red and green, and a unique visual pathway to encode blue an yellow.
The same hypothesis was done for a visual pathway encoding achromatic black and
white signals. It takes to formulate a neural representation of colours.

This opponent process model was left behind while the trichromatic theory of
colour was stabilising the basis of the modern colorimetry based on the colour-
matching experiments and all the derived standard spaces. It was resurrected when a
hue-cancellation method was de�ned by Hurvich and Jameson [58] to quantitatively
measure colour-opponency.

Due to the e�orts of Hurvich and Jameson with the hue-cancellation experiment
and plus the quantitative data provided by direct neurophysiological responses ob-
tained from some measurements in the retinal neurons of a �sh and in the lateral
geniculate nucleus of non human primates, the opponent processing has been no
longer questioned.

From the Hurvich and Jameson measurements a general opponent model schema
can been derived, we show a computational approach of it in �gure 4.5. There are
some variations of the transform to this space from a trichromatic Young-Helmholz
space, all of them follow the same schema of colour incompatibility the di�erence lies
in the coeÆcients, �i, �j and 
k, that combine the input signals.

In computer vision we usually only have a colour image representation in a RGB
space of an unknown camera and under unde�ned conditions. Among others, a com-
mon representation of the opponent colour space is the one used in [100] that is de�ned
as:

Opp(p) = p �

0
@ 1 1 1

1 �1 1
1 0 �2

1
A ; (4.1)

RGB(p) = Opp�1(p) = p �

0
@ 1=3 1=3 1=3

1=2 �1=2 0
1=6 1=6 �1=3

1
A (4.2)

where p is a 3D-vector of the RGB coordinates of the given space.

To be able to better establish the parameters for the spatial operators we will
de�ne in the next sections, we will use an orthonormal basis, given by:
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Figure 4.5: An Opponent colour vision model for a computational approach.
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RGB(p) = Opp�1(p) = p �

0
B@

1p
3

1p
3

1p
3

1p
2

�1p
2

0
1p
6

1p
6

�2p
6

1
CA (4.4)

In both cases the �rst dimension represents the intensity or dark-white channel,
the second dimension represents the red-green chromaticity channel and the third
dimension represents the yellow-blue chromaticity channel.

4.2 Colour Assimilation as a perceptual blurring

As has been previously introduced, colour assimilation is the perceptual mechanism
that takes chromaticities of regions with very high frequencies towards the chromatic-
ities of the neighbouring regions. This e�ect is the result of a spatial blurring, that
is usually implemented in computer vision with the convolution of the image with a
gaussian spatial �lter [75, 68]. However, in this case the spatial �lter will not be ap-
plied on the RGB space as it is usually done, it will be applied to the opponent-colour
space.
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The idea of building a perceptual tower for a multiscale representation simulating
di�erent views of the same scene from di�erent observer distances and considering the
human colour perception has been taken to a computer vision model for the �rst time
in [11, 79, 84, 80]. All these works have been based on pshychophysical measurements
of colour appearance on human subjects given by the Spatial{CIELAB space de�ned
in [119], this measurements have given the parameters of the spatial �lters needed to
simulate human assimilation on a CIELAB colour space. We will go deeply on this
space in the next section.

In order to correctly apply Spatial{CIELAB blurring in images, the sensor blur-
ring should be removed and be substituted by the perceptual one. In the thesis of
Boukoubalas [12] there is an interesting explanation on how to do this.

4.2.1 S{CIELAB: Spatial CIELAB

S{CIELAB is a spatial extension to the CIELAB1 colour metric that is used for
measuring the quality of colour reproduction in digital images. It has been de�ned
to improve the error computation on non-uniform spatial regions.

The Spatial{CIELAB representation is based in the two-step model de�ned by
Wandell et al in [85, 109]. Firstly, a step to an opponent-colour space from the
CIELAB representation is done, and secondly a convolution with a kernel whose
shape has been psychophysically determined for each colour dimension. Finally, the
�ltered channels are transformed again to the standard CIELAB [117], that is actually
representing the Spatial{CIELAB.

In this case, the opponent representation is built from the standard XYZ colour
space, and is given by:

Opp(p) = p �

0
@ 0:279 �0:449 0:086

0:72 0:29 �0:59
�0:107 �0:077 0:501

1
A (4.5)

where p is given by (X;Y; Z) following the standard CIE 1931.

The spatial �lters for each opponent channel are built as a sum of gaussian func-
tions, that is:

fk = mi

X
i

!iEi (4.6)

where k represent every one of the three opponent channels, mi is a scale factor
chosen to make that the kernel sums to one, and

Ei = ki exp
x2+y2

�2
i (4.7)

again the ki factor scale is selected to make that Ei sums to 1. The measured
values to substitute the parameters !i and �i are given for each opponent channel
in table 4.1. Where the spreads are given in degrees of visual angle. Depending on

1The CIELAB space is an important international standard for colour measurement. The main

property of CIELAB space is the uniformity with respect to human colour judgements.
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Opponent Weights Spreads
Channel !i �i
1 (I) 0.921 0.0283

0.105 0.133
-0.108 4.336

2 (R-G) 0.531 0.0392
0.330 0.494

3 (Y-B) 0.488 0.0536
0.371 0.386

Table 4.1: Parameters of the Spatial{CIELAB spatial kernels.
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Figure 4.6: Pro�les of the two-dimensional symmetric kernels for the Spatial{

CIELAB. Black, Red and Blue colour lines represent the kernel for the Intensity,

Red-Green and Yellow-Blue channel respectively.

the observing conditions the equivalence in pixels is easily computed by the following
expression:

�pixels = d � tan (�degrees) �R (4.8)

where, �pixels and �degrees represent the spreads in pixels and in degrees of visual
angle, respectively; d is the distance in cm between the stimulus and the observer
(or the camera in computer vision), and R is the display resolution that is given in
pixels/cm.

The pro�les of these symmetric �lters are shown in �gure 4.6, where the �lters
have been built to simulate the human colour perception of an image of 550 pixels,
displayed on a visual �eld of 20cm and observed from 40cm.

To illustrate how this transformation behaves on a given image we shown in �g-
ure 4.7 the results of applying the Spatial{CIELAB transformation on two images
presenting an important colour assimilation e�ect. We can see on the pro�les below,
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Figure 4.7: (a), (b) Examples of two images presenting important assimilation

e�ects. (c) and (d) Previous images transformed by Spatial{CIELAB. (e), (f), (g)

and (h) are the RGB pro�les of images (a), (b), (c) and (d), respectively.

how the Spatial{CIELAB transformation makes that the green-blue band is becoming
bluish when is surrounded by blue and it becomes reddish when surrounded by red.

4.3 Colour Contrast as a perceptual sharpening

Colour contrast is the complementary mechanism to the assimilation that takes chro-
maticities of regions with spatial low frequency. Whereas a computational model for
colour assimilation has been proposed in computer vision, a computational operator
that simulates colour contrast phenomena has not been proposed in the computer
vision literature.

In the following sections we will present the main contribution of this work that
is devoted to this end, that is, to de�ne an operator that enhances di�erences in
the transitions among colours of regions presenting lower frequencies. While the
assimilation e�ect has been solved by a blurring operator, it seems quite natural that
the contrast e�ect will have to be implemented by a sharpening operator.

The �nal foal of this operator is to produce a sharpened image that allows a better
segmentation of texture blobs in order to be able to compute their local attributes,
following human perceptual considerations.

4.3.1 Local perceptual sharpening

In this section and in the subsequents we will progressively de�ne sharpening opera-
tors presenting good properties to represent colour contrast. The �rst and the most
common sharpening �lter is de�ned as:
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(a) (b)

Figure 4.8: E�ect of the traditional sharpening operator:(a) original image, (b)

sharpening of the image using the usual transform on the RGB space

Sc(I; 
) = Ic � 
r(Ic) (4.9)

where Ic is the c{th channel of a colour image I of dimensions N �M , r(Ic) is
the laplacian of the image channel c (r(I) = @2I=@x2+@2I=@y2) and 
 is a constant
that controls the amount of the enhancement. This process is done for each channel
separately. Nonetheless, the laplacian operator is very noise sensitive. To avoid this
problem, the laplacian of a gaussian (LoG) is used, that is, to smooth the image
before the enhancement in order to reduce noise e�ects. The resulting operator has
the following expression:

Sc(I; 
) = Ic � 
LoG(Ic); (4.10)

LoG(I) = �
1

��4

�
1�

x2 + y2

2�2

�
e
x2+y2

2�2 (4.11)

where the LoG(I) expression is centered on zero and with gaussian standard de-
viation �. Whichever it is the method used, there is a post{process to clip the output
of the responses outside the range of the image (usually [0 : : : 255] in the rgb{space).
We will use the notation S(I;~
) to indicate that the operator Sc(I;~
[c]) is applied
for each channel of the image and merged together to form a new n{spectral band
image.

The �rst attempt to chromatic contrast perception enhancement is the usual
brightness sharpening, but applied to all the bands of the image, that is: S(I;~
).
This operator has been applied to the colour texture image of �gure 4.8. Apparently,
there is a clear enhancement of the texture that form the image. In the original image
the transition from one blob to another blob of di�erent colour is very smooth. Even
that, some texture is appreciated. Enhancing the image makes the colour blobs more
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Figure 4.11: Example of the Local perceptual operator for large stimuli: (a) original

image, (b) RGB pro�les of image (a), (c) RGB pro�les of image (a) applying operator

T .
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ones. Some extra colours are created nearby the edges of the image, and this is what
makes the texture emerge substantially. Although the edges are enhanced, and so
is the texture, the main area of the colour stimulus is not changed as it should be
for a chromatic contrast e�ect. An example of this situation is �gure 4.11. (a) is the
image used in explaining colour contrast but enhancing its colours. It can be observed
that the e�ect is on the edges of the stimuli and not on the stimuli themselves. The
centres of them are the same when there should be chromatically di�erent. In fact,
the operator should spread the edge response all over the areas that form the edge.

4.3.2 Region perceptual sharpening

Based on the work of Grossberg2 [50] and the operator T , we want to construct a new
operator to improve chromatic contrast simulation. The main idea is to recognise
inhibited and activated areas, whichever the colour dimension is analysed. When
applied, for example, to the red-green opponent colour dimension, the active areas
will be the reddish ones and the inhibited areas the greenish ones. Computationally
its is equivalent to the intensity of the stimulus. In the preceding example a red
area is positive and a green area negative. However, whichever is the sign of the
area it can not be considered neither positive nor negative unless it is compared
with another area. There will be positive and negative responses when comparing
against its surround. A yellow area is a negative area when its surround is red but
negative when green. The laplacian operator performs well in such de�nition because
its response is positive in the transition between dark and light, and negative on the
contrary. We will use the fact that the laplacian indicates the edge location by a zero
cross, i.e: a change between positive an negative response or vice versa. We de�ne
an homogeneous area as the points that lie inside the regions surrounded by zero
cross points. But as we are working in a discrete domain, the zero{crossings are not
well locate. Then, a zero cross are those points where there is a change of sign of
the laplacian between it and one of its neighbours. That makes us de�ne two sets of
zero{crossings:

Zw(I) = fp 2 I j 9pi 2 H(p) : sgn(LoG(I; �)pi) = �1 ^ sgn(LoG(I; �)p) = 1g(4.13)

Zb(I) = fp 2 I j 9pi 2 H(p) : sgn(LoG(I; �)pi) = 1 ^ sgn(Log(I; �)p) = �1g(4.14)

where p stands for the pixels of the image I , H(p) for the pixels belonging to
the neighbourhood of p, and sgn(p) is the sign of the intensity value in p, which
equals 1 when positive and �1 when negative. Zw(I) are the zero-crossings taken
at the falling edge, and Zb(I) at the raising edge. Zw(I) coincide with the limits of
the light (or white) areas and Zb(I) are the limits of dark (or black) areas. I is a
one{channel image, being it the responses to one of the opponent channels. Usually
H(p) is de�ned as

H(p) = f(px; py � 1); (px + 1; py); (px; py + 1); (px � 1; py)g (4.15)

2This a psychophysical work on brightness contrast based on on{o� lateral geniculate cells, mod-

eling responses in the boundary contour system by a sum of exponential functions that is nearly

equivalent to the laplacian of gaussian.



4.3. Colour Contrast as a perceptual sharpening 59

where (px; py) are the coordinates of p. From these de�nitions we construct two
sets of connected components. The inner points of the connected components are
areas where there is no sudden changes, and will be considered homogeneous areas.
We will say that a connected component is white when all of its surround is darker
than itself. In the same way, black connected components are lighter than all of
their surround. From this point, :Zw(I) de�nes the set of plausible white connected
components, Cw(I) = fCw

i (I)g, whereas :Zb(I) de�nes a set, Cb(I) = fCb
i (I)g, of

plausible black connected components. From now on, we will use the term region

instead of connected component. The following step is to distinguish those Cw
i (I)

and Cb
i (I) that are, actually, white or black regions. We de�ne the white regions as

W (I) = fCw
i (I) 2 C

w(I) j
X

p2Cw
i
(I)

�sgn(LoG(I; �)(p)) = jCw
i (I)jg; (4.16)

and in a similar way it is de�ned the set of black regions

B(I) = fCb
i (I) 2 C

b(I) j
X

p2Cb
i
(I)

sgn(LoG(I; �)(p)) = jCb
i (I)jg (4.17)

Up to this point, not all the pixels are classi�ed as belonging to a black or white
region. Those unclassi�ed pixels will be merged in a neutral class, N(I). The pixels
in N(I) belong to regions that are surrounded by lighter and darker regions at the
same time, and so, can not be classi�ed as black or white regions.

N(I) = (Cb(I) [ Cb(I))�W (I)�B(I) (4.18)

Thus far, all regions of the image are classi�ed in one of the three types of regions.
Moreover, we need to specify how much black or white these regions are. The �nal
image ELoG (Expanded Laplacian of Gaussian) will measure how di�erent is a region
from its surround assigning at each pixel of the region the maximum di�erence of all
the pixels in this region with its surround (i.e: the laplacian of gaussian).

ELoG(Ip; �) =

8<
:

minpk2Wi(I)(LoG(I; �)pk ) : p 2 Wi(I)
maxpk2Bi(I)(LoG(I; �)pk ) : p 2 Bi(I)

0 : p 2 Ni(I)
(4.19)

We use ELoG(Ip; �) when applying the process to the pixel p of I , and ELoG(I; �)
when it is calculated all over the pixels of the image I . Two examples of the ELoG
operator applied on monochromatic stimulus are shown in �gure 4.12. The upper
graphics show the original stimuli in blue lines. Graphics (c) and (d) show the result
of laplacian in blue lines and the output of ELoG in red lines. Black regions have
positive response whereas white regions are negative. Regions between darker and
lighter ones have 0 response. We want to remark how the maximum and minimum
inside each region is expanded all around it.

What remains to conclude is to apply the sharpening formula using ELoG(I)
instead of LoG(I). We will call the new operator Expanded Sharpening (ES(I;~
)~�),

ES(I;~
)~� = I � ~
ELoG(I; ~�) (4.20)
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Figure 4.12: Graphic explanation of the e�ect of operator ES(I), on (a) and (b): In

solid lines the original stimulus, in dotted lines the output from the ES(I) operator,

compared with the T operator in dashed lines. On (c) and (d): In solid lines the

Laplacian of Gaussian response, and in dotted lines the output form ELoG(I).
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Figure 4.13: Region perceptual sharpening: (a) the input image, (c) and (d) the

results with two di�erent parameter con�gurations. (b) shows the displacement of

the chromatic values of the test stimulus in (d) with regard to the original stimulus.

And (e),(f),(g) comparison of the pro�les of an horizontal line in the RGB space,

from left to right: original, (c) and (d).
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Returning to �gure 4.12 in (a) and (b) the red lines are the response of the new
region perceptual operator ES compared to the responses of the local perceptual
operator T , green lines. Whereas T (I) only have e�ect in a short neighbourhood,
ELoG(I) works on the whole region. The question is, will it work? and the answer is
not so simple. When dealing with perceptual vision the way to validate a model is by
means of psychophysical experiments. Some times they are done with a very reduced
group of individuals and a short set of test, it is because of the intrinsic complexity
of this type of experiments. The kind of tests are a uniform background scene with
regular polygons, there are some that are more complex than others. They could be
gratings or two simple squares [95, 98, 110, 81]. In any case they should be done by
scientists of this �eld.

In this thesis this problem will not be broached as it is a computational approach
to perceptual vision and we are not trying to imitate the human vision but to ap-
proximate the images to what humans see. As a matter of fact, this operator has
been inspired in the experiments before mentioned. These experiments analyse the
reaction to certain isolated stimulus and lead us to look for the di�erent stimuli in
the image.

We have introduced the example in �gure 4.11 to see the leaks of operator T ,
in this case the result is what is expected. It is depicted in �gure 4.13, where the
original colours of the example are used. In (a) there is the input image and in (c)
and (d) two examples of the operator changing the parameter ~
. (e), (f) and (g) are
the horizontal pro�les of the central line of the image for the input image and both
examples (c) and (d). The red response is occluded by the green one as they are the
same. It can be appreciated a shift of the test stimulus against the surround. The
chromatic coordinates of the test stimulus for the �rst example (c) are the same as
in the input image as the parameter ~
 has been adjusted to work only in the black{
white pathway. In the second example ~
 is a constant vector, and thus, all pathways
are equally weighted. In this case there is a change in the chromatic coordinates of
the �nal stimuli. This situation is plotted in the graphic Fig.4.13(b), where the two
surround of the stimuli have chromatic coordinates S1 and S2 (left to right) and the
original test stimulus is TS. TS1 and TS2 are the chromatic values of the test in the
output image. It is clear that they behave in the same direction that the HVS does.

One such examples of the operator on images of small isotropic texture is illus-
trated on �gure 4.14.

This operator is based on the fact that a region is conceived as inhibited or ac-
tivated in intensity, red{green or blue{yellow channel. If there is a problem it will
be in the de�nition of the regions and the assumption that a region can be only in-
hibited or activated for a certain channel. But the reality shows that under certain
circumstances it can be inhibited and at the same time activated. This is the case of
the example of the bars. What happens when both bars are joined together with a
slim bar of the same stimulus? Taking as example the blue{yellow channel, the left
grey bar will be an activated region whereas the right bar will inhibit. But as they
are connected, they are the same region. When a region is inhibited and activated
simultaneously then it belongs to the set of neutral regions that show no reaction and
then the result is the same input image. The modi�ed experiment is shown in �gure
4.15, where the stimuli are the same colour as before and the results of the operator
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are not shown because they are exactly the same image.

4.3.3 Spread perceptual sharpening

In short, the local perceptual sharpening operator fails because it does not extend to
the centre of the stimulus and the region perceptual sharpening fails because,although
it comes from psychophysical ideas, it does not consider one region to have two di�er-
ent behaviours at the same time. To solve this con
ict we have designed an alternative
operator that combines the good properties of the previous operators. The idea is to
use the LoG edge enhancing to locate the boundary of regions and to use some of the
de�nitions of the region perceptual sharpening to reduce the number of points used
in the operator. The intensity of inhibition/activation in this points will be scattered
to the centre of the region no matter which kind of region it is.

Starting form equations 4.13 and 4.14, which de�ne the points that form the
borders of the regions of the image, we can take the local inhibition or activation of
a region taking the LoG in these points. The following step is to construct a surface
where its height in a certain point indicates the level of activation of this point, taking
into account the intensity on the points of edges that de�ne the region to which it
belongs. This surface must have some properties:

1. The points on the boundaries must preserve its energy, i.e: the relationship
between adjacent regions must be maintained.

2. The zero crossings between points of the boundaries must remain equal, i.e:
there will not be more regions than in the input energy image.

3. Zero crossing can only be added inside a neutral region (de�ned in Eq. 4.18).

Let us call S(X ;Y) the operator that constructs this surface from the energies of
a set of boundary points, X , giving the activation energy on points Y . An immediate
solution is to use some kind of surface interpolation, but not all possible. Some of
the possibilities are: nearest neighbourhood interpolation, linear interpolation and
cubic Hermite interpolation. Some that are not possible are those based on spline
interpolation. The choice of the interpolation method will a�ect the smoothness of
the resultant image. The smoothness is achieved constraining interpolation to certain
conditions on the continuity of the �rst and second derivatives. The complexity of
these methods is considerable and it has to be kept in mind when working with large
images. In this case, it is reasonable to use linear interpolation, instead. Now we can
de�ne the new operator. Since our de�nition of the operator spreads the energy of the
region borders into its inside, we will call it Spread Sharpening (SS), and similarly
the resulting energy surface is a spread modi�cation of the LoG surface. Then,

SLog(I; �) = S(LoG(I; �)Zw(i)
S
Zb(I); I); (4.21)

is the spread Log taking as a control points the energy of the points where there
is a change on the inhibition/activation, and evaluated all over the points of image
I . Following the same schema than in the local and region perceptual sharpening
operators (Eqs. 4.12, 4.20) the �nal operator will be de�ned as:
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Figure 4.16: Graphic explanation of the functioning of region perceptual sharpening

(SS). In (a) the original signal (blue line), the ES output (green) and the SS (red)

are plotted. (b) is the response of SLoG in red in front of the LoG in blue.

SS(I;~
)~� = I � ~
ILoG(I; ~�) (4.22)

Taking the 1D signal of �gure 4.12(b) we will illustrate the e�ects of the operator.
Figure 4.16(a) plots in blue line the original input, in (b) the blue line is the LoG
response of the signal, green line is the ELoG response of the previous operator and
red line is the SLoG response. It is evident the spread e�ect of the function S. The
function solves de problems of neutral regions and makes the edges in
uence the inner
part of the region. The �nal output signal is shown in red in (a) compared to the
output of operator ES in green.

We noted that the region perceptual sharpening failed when applied to image in
�gure 4.15. Let us test the performance of this last operator. Figure 4.17(a) depicts
the resultant image, whereas in (b) we have shown, as an example, the output from
the inhibition/activation function SLoG of the blue{yellow pathway. The pro�les
shown are from the original image and the output image. The pro�le from the output
of ES applied on the same image is not shown because it is exactly the same as the
pro�le from the input image.

4.3.4 Examples

These operators should be tuned to the contents of the image to adjust the frequencies
at which they work better taking into account the distance from which the images are
seen. Other parameter to adjust are the ratios of each opponent channel in the con-
trast response. These adjustments should come from psychophysical measurements.
Whereas it seems that there begins to be a consensus on the �rst set of parameters,
contrast begins at least at 1.7 cpd, it is not clear the in
uence of each channel in
the response. Psychophysics agree that the intensity is the most sensitive channel,
in second term there is the red{green channel and �nally the blue{yellow channel.
However we did not �nd any literature on which their ratios are.
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Figure 4.17: Graphic explanation of the spread perceptual sharpening operator:

(a) is the spread perceptual operator output applied to the image in �gure 4.15, (b)

is the SLoG response using linear interpolation of the blue{yellow pathway, (c) is the

pro�le of an horizontal line from the original image in the RGB space and (d) in the

case of (a).
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Mps
1 > Mo

1^
scale (~�) Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

high 73.78 67.07 48.17
medium 99.39 42.68 42.07
low 63.41 58.54 38.41
all 99.39 85.98 85.37 159.4 97.1

Table 4.2: Spread percetual sharpening on VisTex image database. Values are in

%.

To study the operators we have analysed a set of images from the texture image
database VisTex from MIT MediaLab. It is a large database from which we have
selected some of them to illustrate the e�ects of the spread perceptual operator.
The �gures 4.18, 4.19, 4.20 and 4.21 show four of these images. In all cases: (a)
is the original image, (b) is the output image for which the parameters have been
chosen empirically, (c) and (d) are the projected histograms of (a) and (b) respectively
rejecting one of the dimensions, in each case the dimension rejected was the one that
enables to show a better view, and �nally, (f) and (g) are the projected histograms
on the opponent space, the rejected dimensions have also been chosen to best display
the e�ects of the operator.

The e�ects are more visible when analysing the opponent space. In the �rst
example the division between green and orange is greater in the perceptual sharpened
image than in the original one. Although the printed images do not show a large
di�erence it exists and it is very useful in segmenting colours. The second example
show one case where there are some colours but they can not be intuited from neither
the RGB nor the opponent RGB 2D{histogram. When the image is perceptually
sharpened the opponent histogram show peaks belonging to the colours on the image,
that do not appear in the original. The e�ects on the third example can be seen
even in the RGB histogram. Two narrow peaks (those in red and yellow) show the
localisation of the red and green leaves. In the last example the e�ects of the operator
are weaker than in the previous images. However this is natural if we consider that
the number of colours is large and their spatial location does not produce a colour
contrast e�ect. In this case the operator does not spread colours but concentrates the
distributions of colours.

4.4 Validation

While psychophysical test are not done we have validated the operators looking for
indexes that show a better discrimination between colours. If the operators perform
well the resultant images should be easier to segment in the predominant colours.
Following the scheme in [46], we segment the image in two clusters and get a measure
of how good this clustering is. A new segmentation is done with three clusters and
the measure is calculated. If the previous measure is better than the new one we stop,
if not the number of cluster is incremented and the comparison is done again until
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Mps
1 > Mo

1^
scale (~�) Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

high 82.32 67.68 57.93
medium 73.78 66.46 52.44
low 68.29 70.73 48.78
all 87.80 86.59 76.22 102 87.2

Table 4.3: Region perceptual sharpening on VisTex image database. Values are in

%.

Mps
1 > Mo

1^
scale (~�) Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

high 73.78 78.66 58.54
medium 75.61 75.61 59.15
low 71.34 79.88 59.76
all 86.59 90.24 79.27 38.06 46.94

Table 4.4: Local perceptual sharpening on VisTex image database. Values are in

%.

Mps
1 > Mo

1^
process Mps

1 > Mo
1 Mps

2 > Mo
2 Mps

2 > Mo
2 Mps

1 imp. Mps
2 imp.

SS vs None 99.39 85.98 85.37 159.4 97.1
ES vs None 87.80 86.59 76.22 102 87.2
T vs None 86.59 90.24 79.27 38.06 46.94

Table 4.5: Summary on perceptual sharpening on VisTex image database. Values

are in %.
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a maximum on the measure is reached. Instead of using a k-means algorithm as in
[46] we used an Expectation{Maximisation mixture of gaussians which is more general
and �ts better the data. Both methods are brie
y explained in section 5.2. There
are a number of ways of measuring how good a clustering is, Coleman and Andrews
enumerate some of them in [21]. In this validation experiment we have selected the
following two:

M1 = tr(Sb)tr(Sw) (4.23)

M2 =
Sb

Sw
(4.24)

where tr(�) indicates "trace" or sum of the diagonal elements of a matrix, Sw is the
within groups scatter matrix, a measure of how condensed the cluster is, and Sb is
the between scatter matrix, a measure of the distance between clusters. The scatter
matrices are de�ned in a better context in equations A.2 and A.3 in section A. We
will use them here just as a tool.

The measure used should have a maximum when the best clustering is reached.
Although M2 is better when evaluating the dispersion of clusters, it is not upper
bounded whereas M1 is. We have used M1 to iterate the clustering process and both
M1 and M2 to measure the behaviour of the operators.

Another problem is that the parameter ~� involved in the operators should be
settled specially for each image, however to automatically �nd the best scale for each
image is still an open issue that will derive form this thesis. What we will do is to try
three di�erent scales: high, medium and low, keeping the best clustering. The original
image is also clustered using the same criterion. When Mi is applied on the original
clustered image we will denote it as Mo

i and when done with the sharpened images
Mps

i , whichever it is the used operator. The sharpening is done on the two chromatic
channels, the intensity is left as it is to show the computational chromatic contrast
behaviour. The experiment is done on 164 images of the VisTex image database.
Tables 4.2, 4.3 and 4.4 show the results for the SS, ES and T operator. The last two
columns of the tables are the percentage of improvement of the measures wit respect
to the measure on the original image.

From these results we can conclude that the operators are performing a good
separation of colours on the image. And as we suspected, the more complex is the
operator the better is its performance. The last row of the tables takes the best
clustering in the three scales. Table 4.5 summarises the three operator to show their
evolution.

4.5 Discussion

After an introduction to the colour induction phenomena it is concluded that com-
puter vision lacks of an approach to the chromatic contrast e�ect. While there exists
a computational model of colour assimilation, this is not the case for colour contrast.

Our contribution in this subject materialises in three new operators. The �rst one
takes the traditional RGB sharpening operators to a space where colour appearance
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is best modeled, adding spatial constraints to the generated responses. It has been
illustrated it can work in some circumstances where the stimuli are small, and it can
be adequate to very high frequency textures, but there are many situations where it
does not �t well. This drives us to psychophysical literature that gives us the trail
to search for inhibited and activated regions on the di�erent visual pathways. Once
more, there are many cases where the operator is useful but in some others it can
not simulate the human visual perception. It was an in
ection point to the search
of a more general chromatic contrast operator. The result was the Spread perceptual

sharpening operator that gather the experience in the preceding operators. The core
of the operator is the idea of spreading the inhibition and activation of the cells on
the transition between regions.

The capacity of the operators to di�erentiate colours has been tested on a texture
image database, performing a segmentation and measuring how good it was compared
to the image itself. The results obtained shows a good progression. Although the third
operator is the more complete, the knowledge of the scene can advise to choose one
of the other operators. This is a matter of complexity. Each operator can cope with
more circumstances than the previous one but at the expense of computer resources.

There are open issues that have to be addressed in a near future and they are
outside the scope of this thesis. The �rst one is to �nd the way to combine both
spatial blurring and contrast induction in the same scene. One approach could be to
look for di�erent frequency regions in an image and applying the most suitable colour
induction. On the other hand, we have presented a method that can be adjusted
to viewing distance (~�) and to the weight of each channel in the chromatic contrast
e�ect (~
). Both set of parameters have to be analysed from a psychophysical point
of view, and then transferred to the computer vision �eld.



Chapter 5

Application to surface inspection

problems

All the previous chapters de�ne the necessary conditions to broach the problem of

surface inspection, basically on industrial problems. This term includes a wide range

of problems but we will centre in those where texture and colour simultaneously are

the key factors in the problem solution. The work presented here began with an

application devoted to the classi�cation of coloured and textured samples of ceramic

tiles. Nonetheless, the tools and methods used can be applied for many similar

applications.

Considering the perceptual operator introduced in the previous chapter, here we pro-

pose a computational colour texture representation based on a multiscale approach.

In it, colour measurements are done considering the perceptual blurring that simu-

lates a large distance observer position, and the proposed sharpening to simulate a

short distance observer position, from which the blob extraction is derived. From

these blobs the features of textons associated to colours are de�ned.

Finally, we will apply this approach to the classi�cation of ceramic tiles, and to the

problem of printing quality classi�cation.

5.1 Building a colour texture representation

In chapter 1 we have brie
y introduced previous works on colour, texture and colour-
texture computational representations. In chapter 4 we have explained induction
phenomena of the human visual system that explains the interaction between these
two visual cues when appear jointly on a surface.

Now we want to build a computational colour-texture representation that considers
the induction phenomena. To this end, we will follow a common approach in computer
vision that is building a feature vector that combines di�erent image properties, but
in this case we will make it to take into account the induction phenomena that are
involved in the human perception of colour textures.

In �gure 4.4 we have plot a model proposal to integrate the most common e�ects

75
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of colour induction: assimilation and contrast. We have seen that the �rst can be
computationally simulated by a perceptual blurring and the second can be compu-
tationally simulated by a perceptual sharpening. Their activity is complementary,
the �rst one is produced when the spatial frequency is high and the second one is
produced when the spatial frequency is low. This scale-dependent mechanisms are
very common in multiscale approaches in computer vision, and it allows to extract
di�erent information of a given image as it is implementing a vision process of looking
at the image from di�erent observer positions or looking at di�erent image regions in
a more attentive process.

The colour assimilation allows to take a global colour measurement of an image
region when observed from a long distance position and when blob details are lost.
The colour contrast phenomena allows to take local measurements of the image blobs
when observed separately, that is, from a short distance position. We have seen in
chapter 1 the need for these two types of measurements, when we propose a colour-
texture representation. In this case, and to consider colour and texture interactions
we will de�ne the measurement on a set of preprocessed images that will simulate the
induction phenomena. These sets of images are constructed in the following steps:

Step 1 A given input image, I , has to be transformed to its opponent colour repre-
sentation, as it has been seen in chapter 4, we will represent as Opp(I)i the i
channel of the opponent representation of I .

Step 2 An assimilation process is simulated by building the following set of images:

fA(Opp(I)i; s)g (5.1)

where i represents the image channel and s represents the scale of the perceptual
blurring, A(I; s), that represents the convolution of the image I with a kernel
de�ned by the s parameter. In this case, the convolution kernels can be built
accordingly for di�erent observer conditions, by considering the psychophysical
measurements presented in the Spatial-CIELAB introduced in section 4.2.1. In
this case the selected scale will be directed to tune the high spatial frequency
image relationships, these set of images will be the basis for global measurements
of the image colour.

Step 3 A chromatic contrast process is simulated by building the following set of
images:

fC(Opp(I)i; s)g (5.2)

where i represents the image channel and s represents the scale of the perceptual
sharpening, C(I; s), which can be implemented by the spread sharpening de�ned
in section 4.3.3. In this case we do not have the psychophysical measurements
that can provide the needed parameters to represent the conditions for a given
scale. Therefore we will only use this set of images for the blob segmentation
step, but not for colour measurements.
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Step 4 The results of the previous steps put the basis for a consistent blob segmen-
tation step based on colour properties. The blob segmentation process will be
explained in the following section. The set of k segments of a given sharpened
image will be denoted as:

fCsg(Ii; s)gsg:1:::k (5.3)

Once, the colour induction phenomena have been simulated on a set of blurred
and sharpened images, now we want to measure colour and texture properties of these
images.

In the next sections we will explain how to perform a blob segmentation based on
colour properties, afterwards, we will de�ne the global and local measurements that
are usually computed for colour and texture representation, and �nally we will build
the complete computational colour-texture representation we want to propose.

5.2 Perceptual blob segmentation

In the representation of the colour texture that we propose, the blobs play an impor-
tant role in the description and they should be treated carefully. In the next section
we will describe the possible mechanism to obtain the set of images where which
content are blobs of similar colour.

The �rst step to describe colour texture is to separate pixels on the image that
share similar colour properties. This step can be seen as a colour-granulometric
stage, where we sieve pixels of di�erent colours. Given an image, the output of
this segmentation step is a set of images containing the blobs of a speci�c colour.
Although there are many ways to segment images most of them are based on its spatial
contents (region growing, split and merge, etc) and they are not what we want. Our
segmentation has to be independent of the spatial relations between colours. The
objective is to return a set of sets of pixels where in each of these set the colour
variance is minimum independently of the pixel location. From the segmentation
methods we will focus on clustering methods, and from these ones on the bayesian
approach.

We can do this as a supervised operation in which approximate colour coordinates
are introduced to initialise each colour centre, or in unsupervised mode starting from
algorithmically chosen centres. In the second case the clustering algorithm can have
non{deterministic solutions, depending on the way these centres are chosen. However
most of the times these algorithms tend to the same solution. This point should be
kept in mind when working with colourful images.

The basic idea of cluster algorithms is that given an image I with c di�erent
colours, and given a set of initial colours fC1; : : : ;Cpg the segmentation step output
is a set of images:

fI1; : : : ; Icg

where each image Ii contains all the blobs of a speci�c colour labeled i. Although
there are many algorithms to cluster colour data, we have selected two of them for
being widely used in computer vision. One of the methods is chosen for its simplicity
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and the other one is based on the same idea but a more complex model is behind it. In
the last case not only blobs are clustered but also it gives statistical information of its
colour content that can be useful for posterior colour classi�cation. These algorithms
are the well known k{means and expectation maximisation mixture of gaussians. In
both cases the number of clusters to obtain must be set a priori. To solve this problem
a simple method is de�ned in [46] to analyse how many colour clusters appear in the
image. In all of our cases the number of clusters is known since we have information
of the production process or we know what we are looking for. We will summarise
both clustering methods brie
y that are described in detail in [26, 10].

The point of departure in any case should be an image where clustering is helped
by its content i.e: the much separate the colours are the easier is the problem of
clustering. If we manage colour separation by means of linear transform the problem
remains the same as the proportions are maintained. So a non linear transform is
needed. In chapter 4 we have introduced the colour contrast perceptual operators.
In a normal situation they act to simulate human behaviour when looking at low
frequencies patterns. In our examples we have high frequency texture, however we
use the spread perceptual sharpening operator (Eq. 4.22) to simulate a human being
looking at the sample at very high resolution: In this case colour contrast conditions
operates and colour blobs are easier to segment. Figure 5.1 explains this e�ect where
an original sample with their 2D{histogram distribution in the RGB and opponent
space are depicted in the left column, and when applying the SS operator (right
column) the colours in the image appear more clearly. We are not saying that colour
contrast is the e�ect that helps humans to distinguish colour blobs, in fact if any
process is done it is assimilation, but in order to better cluster colour data to describe
how colour texture is, humans perform better at high resolution.

5.2.1 K-means clustering

Given a set of n{dimensional data, the goal of the k{means clustering is to �nd the
centres of the colour cluster �1;�2; : : : ;�c to be used as their prototypes, where c i
the number of clusters that has been set a priori.

Starting form a set of initialised cluster prototypes � = �1; : : : ;�k we want to
know which is the probability for one pixel xi to belong to the cluster !k, P (!k j
xi;�). The algorithm works with the assumption that if the distance between xi and
�k is small the probability is large. Then, we compute the square Eculidean distance
between the pixel and all the cluster prototypes, k xi��p k

2. Let �m be the nearest

prototype to xi then, we approximate P̂ (!k j xi;�) as

P̂ (!k j xi;�) =

(
1 : k = m

0 : otherwise.
(5.4)

Following this schema each pixel of the image is set to belong to one cluster and
from the pixels in each cluster the prototypes �k are recalculated. This process is
done until some stop condition is reached. This condition could be the number of
iterations to do or the stability of prototypes of a minimum threshold to reach of the
RMS error.
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Therefore, k-Means algorithm is performing a clustering step over the colour space,
where clusters are formed considering the euclidean distance between colour coordi-
nates of pixels in this space. Given that we are using an euclidean distance on a colour
space we should do it on a perceptually uniform colour space as CIELAB or CIELUV.
Some experiments have been done in this sense and they make us to conclude that, for
the images of our applications, the segmented blobs are nearly the same, hence, there
is no need to introduce a step that needs further calibration and does not improve
the clustering result.

5.2.2 Parameter estimation of the colour distribution

In this section we assume the colour distribution as the sum of several gaussian dis-
tributions. To get an estimation of the parameters of these gaussian we will use an
Expectation{Maximisation method.

This method assumes that data are generated from a set of gaussian distributions
that when mixed form the �nal distribution. Its goal is to extract the parameters of
the gaussians that best describes the distribution form the data themselves. It is done
in a two steps process were in the �rst and starting from an initial guess an expectation
of which are the best parameters is done. The second step takes the set of all possible
parameter modi�cations and chooses the one that maximises the �tting of data with
the mixture. With this new guess another iteration is done until some condition is
reached (as in the case of k{means procedure). The degree of data �tting is measured

in terms of likelihood L =
QN

n=1 p(xn), where data are N points, xn, and p(xn) is
the a priori probability of a given point to happen. But to reduce the complexity of
the problem the log{likelihood is used and then it becomes a minimisation problem
of the expression

E = � lnL = �

NX
n=1

ln p(xn) (5.5)

p(x) is de�ned in term of the probability of belonging to the gaussian distribution
of the mixture given a probability of each particular gaussian to occur, p(x) =Pk

j=1 p((x) j j)P (j). In the case of mixture of gaussian and for the case of diag-
onal covariance to simplify the problem, the probability of a given d{dimensional
point to belong to a certain gaussian distribution j is

p(x j j) =
1

(2�)d=2
p
j �j j

e
�
(x� �j)

0��1j (x� �j)

2 : (5.6)

Then we can take derivatives on the unknown parameters of the gaussians max-
imise the likelihood. In this case @E

@�j
and @E

@�j
for all j he details can be found in [10].

The a priori probability of a certain gaussian P (j) has to be also derived to maximise
L. As our intention is jut to pose the method we will not focus in the mathematical
description. From this maximisation step we obtain a set of parameters that de�ne

the con�guration of the mixture, �̂j , �̂j and ^P (j) that are the initial guess for the
next iteration.
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Figure 5.2: Decision criterion: when a point x can belong to more than one gaussian

distribution it is rejected. In the example, y will be set as a point in G2 because its

di�erential to G1 is large enough.

5.2.3 Decision criterion for clustering

When using mixture of gaussians the pixel x is classi�ed as belonging to the cluster
i with maximum posterior probability p(i j x;�i) = p(xx j i;�i)P (i)=

Pc

j=1 p(x j
j;�j)P (j), where �i are the parameters of the i{th gaussian. The original method
does not take into account that some times a pixel can belong to two or more di�erent
gaussians with nearly equal probability. It is the case of point x in �gure 5.2. Those
pixels with this ambiguity should not be considered to avoid colours to shift from
one cluster to another one. We have introduced a criterion to ensure that pixels
are unambiguous. The idea is quite simple, instead of assigning a pixel to the class
with the prior criterion, the posterior probabilities for each class are sorted and if the
di�erence between the two maximum posteriors is greater than a certain percentage
�p then the pixel is assigned to the �rst cluster, in any other case the pixel is keep
away in an ambiguous cluster. Then, C(x;�) as the expression to classify a pixel to
a cluster i from a set of gaussian parameters � = �1 : : :�c is:

C(x;�) =

(
i : p(i j x;�i)(1��p) � p(j j x;�j) 8j = 1 : : : c ^ i 6= j

ambiguous : otherwise

(5.7)

To �nish this section we show an example of the two cluster techniques applied
both to the input image an the perceptually sharpened image of �gure 5.1(a) and
(b). If the images are not reproduced with a high quality printing device the colour
di�erences perhaps will not be seen and the attention should focus in the shape of
blobs. In �gure 5.3 we have applied the k{means method, and a small portion of
the central part of the image is shown for better detail. (a) is the detailed input
image. (b), (c) and (d) are the three clusters generated using this technique to
the input image as it is. The last row are the respective clusters when the input
data to the clustering algorithm is the spread sharpened image. Small di�erences
can be appreciated but they can be crucial in describing textures based on blobs
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5.3: K{means clustering example: (a) is the central area from the original

image to which clustering is performed. The following row is the result of segmenting

in 3 clusters on the original image. Last row when applied to the sharpened image.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 5.4: Mixture of gaussians clustering example: (a) is the central area from

the original image to which clustering is performed. The following row is the result

of segmenting in 3 clusters on the original image. The middle row when applied to

the sharpened image. The last one when using automatic supervised clustering.
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characteristics. In the middle and right cluster, the less populated, some blobs that
are merged in the �rst row are well segmented in the last one. One of the advantages
of this method is its simplicity and low computational complexity, however the result
are not very good as colours rarely group in spheres. It is more likely to �nd colour
distributions resembling gaussian distributions, and so mixture of gaussian �t well
when it is the case. The following picture is from the same image but applying
the expectation maximisation mixture of gaussian distributions. Figure 5.4 are the
resultant images whit this clustering method. The �rst row of images contains the
image of clusters from the original image and the last image of the row with those
points that are classi�ed as ambiguous cluster following equation 5.7. It has already
improved the clustering without using the perceptual sharpening. The second row of
images has the same con�guration being the results of the sharpened image. Some
characteristics are remarkable, the number of ambiguous pixels reduces in this case
and like in the k{means algorithm blobs are better segmented in the case of dark and
light blobs. Blue blobs are somewhat messy and is diÆcult to appreciate improvement.
Even in this case when analysed carefully the blob boundaries are better. The last
row introduces a new approach to the clustering. As it has been commented these
techniques can be supervised initialising the �rst guess on the centres of the clusters,
normally it is done manually. This supervision can be done automatically if some
maximum localisation criterion is used. However, in our case the colour data forms a
4{dimensional distribution surface. To construct such surface is very time and space
consuming and it is unfeasible. The approach used is to locate the desired number
of maximums in a 3D space projecting one of the dimensions and use it to �nd
compatible maximums in the other projections. These maxima are the input centres
of the mixture of gaussians. To control the behaviour of the EM algorithm we only
iterate on the covariances, �xing the mean of the gaussian distributions. Applying
this criterion we obtain the results of the third row of �gure 5.4. The density of blobs
is more equilibrated and principally, the blue cluster contains more homogeneous
colours, and the blobs are more accurate. The light blobs are the ones which receive
the colours that are not included in the blue cluster. Nevertheless the inhomogeneity
is not very large, in fact when looking at the original image white points are more
dispersed. It should be noted that this criterion can not be done in the original image
because there not exist clear maxima, whereas in the sharpened image it does.

5.3 Global features

With the following global colour measurements we try to capture a �rst coarse de-
scription of the image using basic statistics. For a given image I of size N � 3 where
each row is a colour triplet and p di�erent types of blobs we will derive from the
clustering step the images fI1; : : : ; Ipg.

Global colour mean: A global colour measurement of the whole image:

M1(I) = �I =
1

N
(I 01) ; (5.8)

where 1 is the constant 1 vector of dimension N .
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Global colour variance: A global colour measurement of how constant the colour
on the whole image is:

M2(I) =
1

N � 1
diag((I � �I)0(I � �I)) (5.9)

where diag(A) is the diagonal vector of the matrix A.

Obviously these two measures describe very coarsely the colour contents of all the
surface.

5.4 Local features

Now we will give some measurements on local properties of the blobs. We are de�ning
the measures to get a more detailed description of the geometry and distribution of
colour textons. Most of them are based on the central moments of inertia ([60]),
which are de�ned as:

mp;q =
X

(x;y)2R

(x� �x)p(y � �y)q (5.10)

where R is the region (or blob) of the image where the moment is calculated, and
�x = 1=n

P
x x and �y = 1=n

P
y y is the centre of gravity with n the total number of

pixels in the region. The moments are calculated for each blob in each segmented
image. Next, we enumerate the di�erent moments proposed to the description of the
form of textons. Although there are many more possible, using high order moments
will capture information on blob geometry, which is usually useless when dealing with
a large amount of blobs. All this measures are over a binary mask of the colour
segmented images.

Blob area It is the moment of order (0,0) that simplifying is the count of the pixels
of a region.

a(R) = m0;0 =
X

(x;y)2R

1 (5.11)

Blob eccentricity A measure of how rounded a region is. When the blob is line{
shaped the value of this measure, ", is 1 and 0 when it is circular.

"(R) =
(m2;0 �m0;2)

2 + 4m2
1;1

(m2;0 +m0;2)2
(5.12)

Elongation A measure proportional to the elongation of the object taken in the di-
rection which maximises the measure. It can be set as the maximum eigenvalue.

�max(R) = 2

vuutm2;0 +m0;2 +
q
(m2;0 +m0;2)2 + 4m2

1;1

2m0;0
(5.13)
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Orientation The angle, �, between the x axis and the axis around which the blob
can be rotated with minimum inertia which is given by the eigenvector to the
minimal eigenvalue.

�(R) = arctan
2m1;1

m2;0 �m0;2
(5.14)

Instead of recording all the values for each blob in each image the information is
reduced to the mean and standard deviation of the measures. For every segmented
image Ii we obtain a set of parameters to de�ne the overall form of blobs in it:

M i
1 =

1

N i

X
b2Reg(Ii)

a(b);

M i
2 =

1

N i

X
b2Reg(Ii)

"(b);

M i
3 =

1

N i

X
b2Reg(Ii)

�max(b); (5.15)

M i
4 =

1

N i

X
b2Reg(Ii)

�(b)

which are the mean values, being Reg(Ii) the set of blobs in the segmented image Ii,
and N i the number of blobs in the image. And the measures standard deviations:

M i
5 =

1

N i � 1

s X
b2Reg(Ii)

(a(b)�M i
1)
2;

M i
6 =

1

N i � 1

s X
b2Reg(Ii)

("(b)�M i
2)
2;

M i
7 =

1

N i � 1

s X
b2Reg(Ii)

(�max(b)�M i
3)
2; (5.16)

M i
8 =

1

N i � 1

s X
b2Reg(Ii)

(�(b)�M i
4)
2

In some cases it can be useful to get a more �ne description of the distribution of a
certain measure. Then, instead of using the mean and the standard deviation we will
use an small dimensional histogram of the parameter in question. For example, we
have used in one of the cases that we will present in section 5.6, the histogram of blob
areas for each segmented image. As we knew a priori which were the usual size of the
blobs we divide them in four bins: very small, small, medium and large blobs. When
the texture is thought to be described by a certain parameter it is straightforward to
obtain its histogram. The small histogram will be denoted as the feature M i

9 where
the number of bins is speci�c for each problem.
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As we want to describe colour textures, a representation of the colour of each
cluster is needed. Three more parameters are extracted from each image Ii. We
compute the mean colour of all the pixels in each cluster as M1(Ii)

Although strictly speaking only M1, M2 and M1(Ii) are measurements on colour,
all the other measures can be considered to extract information of similar colour
blobs, de�ning, separately, how the texture of colours are. The colour space where
the colour measurements are done is not speci�ed. Any suitable one can be selected
whereas it captures the information that is wanted. As in high frequency patterns
colour assimilation is one of the main factors to perceive colour, a perceptual blurring
as de�ned in [12] and introduced in section 4.2 is feasible. With this approach the
distance from the scene to the observer can be modeled by a few parameters.

5.5 Proposal for a perceptual colour texture repre-

sentation

So far we have introduced the methods to isolate the blobs on the image that form the
texture based on the colour information. Colour induction has been used to enlarge
colour di�erences and help to a better segmentation of coloured blobs. It is done
at di�erent scales to simulate the human process of attentive vision. When done at
high frequencies perceptual blurring is performed, and at low frequencies we apply
perceptual sharpening.

The second stage has been to de�ne a set of measures to capture global an local
features on the colour and texture of the image. At this point there is no connection
between both stages.

Our proposal is to merge the two previous points in a single feature vector rep-
resenting the colour texture descriptor of the image. The schema of this proposal
is presented in �gure 5.5. We will take the global measures from the set of images
obtained from the assimilation process, and the local measures from the blob segmen-
tations using di�erent scales on the contrast process. The number of segments used
in the local features will depend on the image content and, when available, on the a
priori information of the problem.

From the schema of colour assimilation and contrast a set of images are obtained
that have to be recombined to be the input to the feature extraction. Given a scale
sp, where 1 � p � n,(i.e.: assimilation conditions) the outputs A(Opp(I)c; sp) for
c = 1 : : : 3 are combined in a tristimulus image A(I; sp), that is, the image obtained
after an assimilation process at observer conditions de�ned by sp. For all the set of
images obtained at the di�erent scales for assimilation we compute the global feature
vector composed by M1 and M2:

fMf (A(I; sp))g p = 1 : : : n; f = 1 : : : 2 (5.17)

A similar process is done with the outputs from the perceptual sharpening, the
images C(Opp(I)c; sp) for c = 1 : : : 3 and n+1 � p � m, are combined in a tristimulus
image C(I; sp) and then a set of k segmented images is obtained from the clustering
process, fCsg(I; sp)g for sg = 1 : : : k. At this point we have k � (m � n) images as
the result of the clustering process on the m� n scales of the perceptual sharpening.
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(a) (b)

Figure 5.6: Tile classi�cation system: (a) Real conditions in which human operators

classify the production. In (b) the o�-line classi�cation system designed for this

purpose.

From those images the local feature vector is obtained. The features included are
those de�ned in section 5.4, from M i

1 to M
i
9:

fMsg
f (Csg(I; sp))g where sg = 1 : : : k; p = 1 : : : n; f = 1 : : : 9 (5.18)

This is a general framework for colour{texture representation, but in each problem
the parameters k, m, n, and the desired features f have to be de�ned to adjust to
the knowledge of the problem.

From now on we will describe two applied cases were colour texture is the key
factor to analyse the problem. The �rst case is the classi�cation of ceramic tiles were
a representation of the texture is needed to di�erentiate between classes with small
di�erences in colour and/or texture. The second case is the quanti�cation of printing
quality from the appearance of the texture in homogeneous ink patches.

5.6 Case 1: Ceramic tile classi�cation

5.6.1 The problem

In this section we treat a speci�c problem of classi�cation of polished ceramic tiles.
Tile manufacturing needs of pigments and clay which are mixed, melted, sprayed to
form the tile substrate, and �nally baked. This is a high quality tile whose produc-
tion can be a�ected by external factors that are diÆcult to control, such as humidity,
temperature, pressure conditions, origin of clays and colour pigments. Changes in
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any of these parameters provoke subtle visual variations of the tile aspect when tiles
are placed on the 
oor, one next to the other. These visual changes are due to small
alterations of colour and texture properties of the tiles. It forces an on line classi�ca-
tion of the production. At present, the classi�cation is done by human experts, and it
always involves subjectivity and loss of repetitiveness. In �gure 5.6(a) we can see the
place devoted to classify the production. In each production line only one model of
tiles is produced. Thus, the classi�cation must be done among classes of each model
and not among models. During one day production up to eight classes can be created.
A correct and non{subjective ceramic tile classi�cation would allow to avoid returns
from customers and to optimise the storage of the production stock reducing stock
fragmentation. Previous research in computer vision techniques has contributed with
interesting works on this problem [12, 83]. Now we will work on it with our colour
texture description approach.

Previous works on the same application only use colour information for the clas-
si�cation task. In one of them [83] the �rst and second order moments of the RGB
histograms are computed as colour and texture measurements, respectively. The sec-
ond work [12] is based on three-dimensional histograms over the RGB space. The
classi�cation process extracts a similarity measure based on the Pearson correlation
coeÆcient between 3D histograms. None of them compute blob measurements.

5.6.2 Human criteria for tile classi�cation

Nowadays, this classi�cation task is performed by specialised workers requiring a
training period before to do it. One worker is replaced from the production line every
two hours in order to avoid fatigue. It is such a subjective task that two di�erent
people can disagree in classifying the same sample. However, they have developed
their own jargon to speak about tile di�erences. With the collaboration of a company
of this industrial sector we did an experiment with human operators om order to get
maximum information on hoe they do the classi�cation.

Firstly, we asked classi�cation experts to list the vocabulary that has been the
basis to develop this work. The following list presents the characteristics they look
at:

1. Fine{grained vs. coarse{grained: It is an obvious feature that de�nes the size
of the grains.

2. Opened grain vs. closed grain: it is a measure of the distance among grains of
the same size that could be intuitively interpreted as some density factor.

3. Light vs. dark grain colour: The colour properties of a speci�c type of blobs.

4. Light vs. dark background: The colour properties of the tile background. For
some tile models with an important di�erence between the amount of every
colour can provoke a predominant colour and a secondary colour. The �rst one
will be called the background and will the blobs froming this bakground will
not be considered.
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5. Light vs. dark global colour: The colour properties of the overall colour im-
pression due to the interaction between background and grains or between all
grains.

Two tests were done with a group of trained people to search for the motivations
they make conclude a certain classi�cation.

� For a set of seven di�erent classes of the same model and for two models they
were asked to enumerate and quantify which were the features that, from their
point of view, allowed to discriminate between a pair of classes. When describing
these di�erences several tiles of each class were used.

� For each class the expert had to determine which were the three most similar
classes.

The conclusion in the �rst experiment was that they do not focus on the interaction
between colours but in the global appearance of tile and in local features of each colour.
In the second case it was clear that they admit that some classes can be mixed without
a very high inter{class di�erence, and that when a class can be confused with another
one the behaviour is usually symmetric. From the models used in the experiments
and from the experience of human operators, it was agreed that human classi�cation
is more diÆcult as the number of colours increases.

5.6.3 Preliminary approach

Although there exist some commercial systems that claim they cope with the ceramic
classi�cation problem only the works in [83] and [12] are documented, the others
only have a short brochure without any indication of its classi�cation rates and the
methods they use. In both cases global colour information has been used, although
the in
uence of the texture has been considered by simulating an assimilation step in
the second one.

Our �rst attempt is to check if using only global colour information is enough or
something else is needed.

Similarity measurement

In computer vision the problem of de�ning similarity measurements has been widely
studied for the object recognition task. In [27] it is argued that the recognition is
mainly based on distances on a small dimensional space and on the de�nition of
prototypes which can de�ne a class of objects.

In this work, as in [13] we will use the linear correlation coeÆcient (Pearson's r)
between image histograms to compare the tiles. Then we de�ne D as a similarity
measurement:

D(r; s) = 1�

������
P

i(H(Ir)i �H(Ir))(H(Is)i �H(Is))qP
i(H(Ir)i �H(Ir))2

qP
i((H(Is)i �H(Is))2

������ (5.19)
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(a) (b)

Figure 5.7: Classi�cation of the same tile set using two di�erent reference tiles: (a)

Reference tile is 36. There is no possibility to discriminate between classes tb33 and

tb41. (b) Reference tile is 26. Only class tb35 can be discriminated in relation to the

other two.

where Ir and Is are images to be compared, H(Ij) is the histogram of the Ij image
and H(Ij)i denotes de number of pixels of the I

j image having colour i, where i is a
triplet of red, green and blue values which range from 0 to 2b, being b the number of
bits used to digitise the image. H(Ir) is the histogram mean.

So that, the correlation coeÆcient helps us to get a similarity value between two
di�erent tiles. Every tile is de�ned by its own histogram. If D(r; s) value is near to
0 it means that images Ir and Is belong to the same class, on the contrary, a value
near to 1 signi�es images are from two di�erent classes.

Classi�cation by similarity

The use of similarity measures to classify involves the election of the representative
samples for every class of tile. Usually, they are arbitrarily selected among those
whose classi�cation is known. This can cause some problems since an algorithm can
obtain di�erent results depending on which is the sample used as prototype.

In Boukouvalas's work [13], the classi�cation uses one reference sample. The
algorithm classi�es based on thresholds on the correlation coeÆcients between the
sample and the reference tiles that have been taken. Applying this method to our
samples makes us realise on how important is the choice of the reference sample.
Changing the reference sample can vary the capability to discriminate among classes.
An example of this problem is shown in �gure 5.7. The x axis is the number of sample
and the y axis is the distance D(r; s) from each sample to a reference sample, which
is di�erent in the �rst and second plot.

To avoid the above mentioned problem and to get a classi�cation less dependent
on the reference chosen, we propose a new method to select the prototypes of each
class. N images of each class of tiles were taken to elect the representative sample.
From them we obtained a similarity matrix calculated using the measure D between
the three{dimensional histograms of all of them.

To select the most representative images for every class, its con�guration inside
the space of classes has to be analysed. We used Multidimensional Scaling as a
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method to explore the con�guration among them [64]. This method allow us to use
a similarity matrix to �nd the point coordinates of each sample in a D{dimensional
space. The distances between pairs of points in the con�guration agree with the
similarity measurements.

The dimension D of the space where samples are represented is �xed by the stress
measure. This is an error measure between the similarity matrix used and the dis-
tances matrix of the points in the new space. In our experiment we generate a
6{dimensional space with an stress value of 0.07, which we consider enough for our
purposes. A stress value of 0.05 is considered good to establish the real space dimen-
sion.

In this space, we group the samples of the same class. For every group, the �rst
three samples closest to the centroid of the group are taken as class prototypes.

The classi�cation process consists of two steps. Firstly, to calculate the similarity
of the input sample to every prototype computed in the above step. Secondly, if
the minimum distance does not exceed a certain threshold, T , the input sample is
classi�ed as belonging to the same class of the representative sample from which the
minimum is obtained. Otherwise a new class is de�ned and a new space to classify is
calculated. The parameter T determines the stock fragmentation, the smaller T the
higher fragmentation.

Results

The test has been carried out in laboratory conditions, where 90 tiles were used from 3
di�erent models with 3 classes in each model. We used the full histogram to calculate
the similarity D implementing the histogram with BTrees in order to save memory
space. If the histogram dimension is reduced the method is unfeasible because of
the small di�erences in colour between classes. The classi�cation rate was over 90%
using exclusively colour information, but when used in a larger set of samples the
classi�cation rates dropped to approximately 75%. This was because colour can not
cope with all the cases and both colour and texture has to be considered. There are
samples with the same colour distribution that they only di�er on how colours are
distributed on the sample. These were the �rst steps in the colour texture inspection
problems.

5.6.4 Classi�cation based on proposed perceptual features

From the conclusion of section 5.6.2 we translated the list of visual features to compu-
tational features on the image. There is not a one to one equivalence between expert
and computer features but we de�ne measures that involve several expert words.

We can associate measurements M i
1, M

i
5 and the small dimensional histogram on

a(R), M i
9, to the �rst characteristic from the list. M i

9 can also catch information on
the second characteristic. Light vs. dark grain colour and Light vs. dark background
are represented by measurement M1(I

i), depending on the segment applied it will
be grain or background. Which one it is the segment assigned to background is not
relevant because we do not need to explain the reasons because the computational
system classify, and for all i, M1(I

i) will be calculated. M1(I) and M1(I) are used
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to de�ne the �fth characteristic, Light vs. dark global colour. We also add two more
measure to the list of selected ones, M i

2 and M i
7 because when the grain is open, in

their jargon, blobs are more rounded and have less variation in its elongation. From
this set of measures M i

1 and M i
5 are rejected because they are redundant to some

extent with M i
9.

In short and as a summary 2 vectors are obtained as a more global description
(M1(I) and M2(I)). Two more set of vectors describe globally how are the main
statistical properties of each of the colours in the image, M1(I

i) and are applied to
each of the p segmented images. Finally the M i

9, M
i
2 and M i

7 measures geometric
properties of the blobs in each of the images Ii.

To result these concepts in the general colour-texture representation (section 5.5),
parameter f associated to global features is f = f1; 2g, and f associated to local
features is f = f2; 7; 9g The last step is to input the feature vector into a classi�er.
We have used the Linear Discriminant Analysis de�ned in A.

Results

We have tested the classi�cation method on a variety of feature vectors obtained com-
bining the two clustering methods and applying perceptual blurring and without it,
that is: n = 0 and n = 1 in the colour texture representation model. The segmenta-
tion method is done on the original image and in the perceptually sharpened image,
m = 0 and m = 2. We did not combine them, but tested two di�erent con�gurations
fn = 0;m = 0g and fn = 1;m = 2g. As the tiles of the same model have a single main
frequency, there is no need to extent the feature vector to a multiscale representation
on perceptual blurring and sharpening. For both cases, the frequencies are selected
manually for each model.

We have used six di�erent models of tiles with a total set of 514 samples distributed
in 47 di�erent classes. Each sample has been divided in three regions which results
in 1542 images. One third of the images are randomly selected to be used as learning
set and the others are the test set. The classi�cation percentages obtained are those
from table 5.1 to 5.6. The �rst column of the tables is the preprocessing applied
to the image which can be the SS operator (fn = 1;m = 2g) or the image itself
(fn = 0;m = 0g). The second column is the clustering algorithm used where MG
stands for Mixture of Gaussians. As the experts recognise that some times the same
sample can be included in two di�erent classes, we have obtained the percentage of
images classi�ed as the class that they actually belong and the percentage of images
that their real class is the �rst or second best match. Due to the fact that the tiles
are previously sorted by humans it is reasonable to take this second percentage as the
capability of the system to cope with the problem. The percentages are taken only
on the test sample, the learning set is not considered.

Not all the models have the same number of pigments. When it increases the
human experts have more diÆculties to classify them. The models used in this ex-
periments where Duero, Tiber, Cinca, Orinoco, Ohio and Mijares with 2, 4, 3, 3, 2,
and 3 di�erent pigments respectively. Table 5.7 contains the global results for all the
models. The conclusions from the tables can be summarised in

� When the number of pigments is greater than two, there is more confusion
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Process Clustering 1st rank 1st or 2nd rank

SS operator MG 98.75% 100%
KMeans 97.08% 100%

None MG 84.16% 92.08%
KMeans 85.83% 92.91%

Table 5.1: Classi�cation results for Duero model. Number of images in the test set:

240.

Process Clustering 1st rank 1st or 2nd rank

SS operator MG 97.5% 100%
KMeans 97.08% 99.5%

None MG 92.5% 96.66%
KMeans 91.25% 96.66%

Table 5.2: Classi�cation results for Tiber model. Number of images in the test set:

240.

Process Clustering 1st rank 1st or 2nd rank

SS operator MG 98% 100%
KMeans 98% 99%

None MG 89% 92%
KMeans 87% 93%

Table 5.3: Classi�cation results for Cinca model. Number of images in the test set:

100.

Process Clustering 1st rank 1st or 2nd rank

SS operator MG 94.05% 99.01%
KMeans 91.08% 97.02%

None MG 88.17% 90.59%
KMeans 86.13% 89.10%

Table 5.4: Classi�cation results for Orinoco model. Number of images in the test

set: 202.

Process Clustering 1st rank 1st or 2nd rank

SS operator MG 99.30% 100%
KMeans 99.30% 100%

None MG 95.83% 97.22%
KMeans 94.44% 96.52%

Table 5.5: Classi�cation results for model Ohio. Number of images in the test set:

144.
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Process Clustering 1st rank 1st or 2nd rank

SS operator MG 100% 100%
KMeans 100% 100%

None MG 100% 100%
KMeans 100% 100%

Table 5.6: Classi�cation results for Mijares model. Number of images in the test

set: 102.

Process Clustering 1st rank 1st or 2nd rank

SS operator MG 97.47% 99.61%
KMeans 96.40% 99.03%

None MG 90.76% 94.36%
KMeans 89.30% 93.87%

Table 5.7: Average classi�cation results for all models.

between blobs and working on the original image has worst results.

� Although the ratios are not so high than in the previous case, perceptual sharp-
ening operator always gives better results even if the number of di�erent pig-
ments is low.

� The use of the clustering algorithms is not very crucial in the �nal classi�cation.
There are some advantages in the case of mixture of Gaussians, but at the
expense of processing time and memory usage. Thus, when the classi�cation
ratio is not crucial kmeans is a feasible option.

� Due to subjectiveness in the human classi�cation, taking the �rst and second
best classes to �t the sample is an approximation in the uncertainty introduced
in the classi�cation process.

Although the number of classes in each model is important, the higher the number
of classes is the higher probability of misclassi�cation, but it can happen even with
very few classes. In the case of Cinca model there are three di�erent classes but the
classi�cation is not perfect, whereas in the Mijares model there is no error with the
same number of classes. This is because of the the tiles supplied in the second case
are very di�erent between them and any approach will solve it. In regard to Duero,
Tiber, Orinoco and Ohio models, the number of grades respectively is 10, 12, 11 and
7.

In spite of these good results, the problem is not completely solved. What we get
is an evidence that the colour texture description approach is valid for this problem.
However the dynamic creation of new classes inside a model is not obvious, and until
it is not done a full on{line system can not be build. To work with this problem
we should have all the tiles produced before and after a new class is created, and
that needs a more complex logistic when the prototype is done in o�{line production.
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None of the works found in this �eld cope with this problem and it is still an open
problem to solve in the future.

5.7 Case 2: Printing Quality evaluation

The second industrial problem that we focused on was a particular aspect of the
printing quality evaluation. One of the problems of the printing industry is to assure
printers can print homogenous colour patches, if they cannot do it very poor �nal
results are obtained. Sometimes the print head produces a vertical degradation that
translates to an striped patch which is called a banding e�ect that diminishes the
printing quality. Sometimes it is a very smooth e�ect and sometimes is very obvious.
As many other applications it is done by humans, which implies subjectivity and non{
repetitiveness, as in the previous case. To control the printing quality they grade each
patch in di�erent levels. The problem is to �nd a set of parameters to automatically
evaluate this grade or, even better, to give a number in a continuous domain of how
good the printer is.

Unfortunately we had a very short set of examples. In addition the images were
scanned at a medium resolution and we do not know exactly the parameters of the
process. Despite these adverse circumstances we have tried the SS operator to this
problem.

The perceptual sharpening operator SS can work on any colour space whenever
it is tristimulus. Although the opponent space is the best to be used when simulating
human behaviour, others can be used to make di�erences more obvious in speci�c
problems. That is relevant when analysing printed images because the tristimulus
used in this process is based on the subtractive primaries cyan, magenta and yellow

plus a fourth ink introduced for practical purposes, black, and so it is called CMYK
model. Then instead of using the opponent space we will use the SS operator on the
CMY space as the quality test are usually done with pure inks. With this modi�cation
we can operate only on the principal channel of the patch, which is a priori known.
For example, if we operate on the opponent space a nearly homogeneous cyan patch
will present a colour distribution that will be shared by the two chromatic opponent
channels. When performing in the CMY space the representation lays on a single
channel and this is the only one that has to be sharpened.

The transform from RGB (the original colour space of the images) and the CMY
space can be approximated by:2

4 C
M
Y

3
5 =

2
4 1

1
1

3
5�

2
4 R

G
B

3
5 (5.20)

When testing the black ink, as it is just luminance, the opponent space is used
and the �rst component is sharpened as there should be no chromatic information.

The images from banding e�ects are somewhat textured because the white colour
of paper sheet becomes more visible as worst is the defect of the printer. That is, the
more evident is the defect the more texture appears in the image. A printed image
is never perfectly homogeneous but when it is good the colours that appear are very
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Figure 5.8: Cyan patches from di�erent printers, ordered from top to down by its

banding quality. From left to right: original image, colour distribution of the image

on the cyan channel, distribution of the image after the SS operator in the CMY

colour space, gaussian mixture of the previous distribution.

close one to the other. When there exist non{homogeneity and the colour distribution
is analysed the main colours that appear are white (the paper colour) and the hue of
the basic ink. Those colours are clearly far away one from the other. We will use this
e�ect to visualise the printer banding error.

What we do is to cluster the colours of the image into two groups using the decision
criterion based on modeling de distributions by a mixture of gaussians de�ned in
section 5.2.2. If the region is homogeneous two clusters with their means very close
have to be found, and the covariance matrices of both of them have to be compact.
One way to measure this compactness is to calculate the ellipsoids that includes 99.5%
of the distribution. The length of the semi{axes is a parameter of how scattered is
the colour. If a simpler parameterisation is needed the linear discriminant analysis
of gaussian distributions can be calculated and then the mean and covariance will be
2{dimensional instead of 3{dimensional.

It is common that on some inks the banding e�ect is stronger than on others
and this makes each ink to have di�erent grades. For example, gray patches are
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Figure 5.9: Magenta patches from di�erent printers, ordered from top to down by

its banding quality. From left to right: original image, colour distribution of the

image on the cyan channel, distribution of the image after the SS operator in the

CMY colour space, gaussian mixture of the previous distribution.
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Figure 5.10: Grey patches from di�erent printers, ordered from top to down by

its banding quality. From left to right: original image, colour distribution of the

image on the intensity channel, distribution of the image after the SS operator in

the opponent colour space, gaussian mixture of the previous distribution.

usually better than cyan, and light colours are less sensitive to banding e�ects than
the darker ones of the same hue. It is for that reason that in the examples that we
show de number of grades are di�erent and the magnitude of the parameters is speci�c
for each ink.

Figures 5.8, 5.9 and 5.10 shows the results on some samples. The �rst one, a cyan
patch, has four grades shown in the �rst column of the �gure, sorted from best to worst
according to the given classi�cation. The �rst patch is clearly homogeneous whereas
the last one is the worst case. In the middle the degradation can be continuous. When
plotting the histogram of the cyan channel from the original image, second column,
we observe a peak in all cases and in the last one there is a queue that is the white
pixels. The other three cases are diÆcult to evaluate from this distribution. When
applying the SS operator in the same view, third column, there appear two peaks
when the image is more or less homogeneous, corresponding to the cyan in the image
and the last one with one peak of the cyan and a more exaggerated queue of the
white. The distance between peaks, if they exist, and their width can characterise
the homogeneity of the sample. The results from modeling them with a mixture of
gaussians are shown in the fourth column. The �rst ellipsoid, in red, is linked with
the highest cyan in the image and the grey one to or the second cyan in the image or
the white pixels. When it captures information of white pixels it is more elongated
and its centre is far away from the centre of the red ellipsoid. If it is the coverage of
a second cyan then the semi{axes are more similar and the centres are closer.
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Figure 5.9 shows the same e�ect in a magenta sample where the same rules can
be applied. And the last image is from a grey patch, where the red ellipsoid holds
information of white pixels and the grey one includes the black pixels. In this case
there are only three di�erent samples because this colour is not so sensitive to the
e�ect.

No numerical results can be extracted as we would need a number of samples to
get a good validation of the parameters and their meaning. Despite this lack the
preliminary results show encouraging performance towards its quanti�cation.

5.8 Discussion

In this chapter we have addressed the colour texture representation based on percep-
tual mechanisms. To de�ne a general framework to describe an image we have taken a
multiscale approximation. In this way human attentive processes can be represented
computationally. A clustering process on the perceptual sharpened images is done
to better adjust the blob segmentation, which can be adjusted to reject ambiguous
colours.

Another point of interest is the de�nition of two sets of features valid for a wide
set of di�erent sort of iamges. Global and local features are calculated for every scale
needed. The use of feature vectors is not new in representing textures. What it
changes from existing works is the use of the features on the images that segregate
similar colours.

The general framework is closed de�ning a general schema that can be adapted
to the knowledge of the problem, rejecting features, assimilation scales or contrast
scales. Its 
exibility allows adapting to a wide variety of problems.

Two of such problems are presented at the end of the chapter. The �rst one to
demonstrate the viability of a classi�cation system of ceramic tiles, which is badly
posed as a problem of just colour di�erences. The second one uses the perceptual
segmentation to quantify the banding error of printing industry. In this case, the
results are preliminary but they present a good perspective.
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Chapter 6

Conclusions and open research

directions

Before to come in the details of the main contributions of this work we should review
which was the aim of this thesis in its initials. The goal was twofold:

� From an engineering perspective, it was to solve the problems of an automatic
inspection system of colour texture surfaces, when the �nal target is to get
quantitative measures of general colour texture properties. We were mainly
addressed to the grading of polished ceramic tiles.

� From a scienti�c perspective, it was to de�ne robust computational colour tex-
ture representations that allow to derive similarity judgements which are coher-
ent with human perception and represent enough sound information to allow
complex classi�cation tasks.

Taking in mind these two goals, the essential contributions of this work can be
summed up in three:

1. A perceptual sharpening operator has been proposed, whose behaviour tries
to simulate the chromatic contrast e�ect demonstrated by the human visual
system.

2. A complete computational representation for colour texture has been formu-
lated. It compiles colour representations that consider spatial operations to
move chromaticities in a perceptual sense, with a feature vector computed on
the modi�ed colour representation that combines global and local features.

3. An on-line colour constancy algorithm for a colour scan line camera that removes
dependencies on spatial and temporal variations of lighting conditions, to be
used in industrial inspection processes in computer vision.

The main advantages of every contribution will be analysed in the following para-
graphs.

103
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The �rst contribution can be understood as a perceptual pre-processing step that
modi�es the colour distribution of an image depending on the spatial relations of
the image content. The modi�ed distribution presents good properties for being
segmented accordingly to the colour appearance of the image blobs.

Even when the number of colours in a scene is not very large, and due to the
smoothing e�ects introduced by the acquisition system, it is common to have unimodal
colour distributions for images where a concrete number of colour are perceptually
segregated without e�ort. Unimodality introduced problems at the time to take a
colour classi�cation decision within the image. To build sharpened images with a
colour distribution where the unimodality has been broken and a clear mixture of
di�erent gaussians have appeared accordingly with the number of the perceived image
colours can introduced interesting properties for general colour segmentation and for
coloured-blob segmentation.

As has been demonstrated in di�erent works on texture perception, as the Julesz
texton theory, the attributes of the image blobs have an essential contribution for any
texture representation. An eÆcient blob segmentation is an unavoidable step before
computing any local property, as blob size, orientation, chromaticity or contrast.

The proposed computational representation presents the ability to compile the
image content properties as a result of a vision process that combines di�erent ob-
servations of the same scene or what we could call an integrated colour multi-scale
representation. Properties obtained from the images perceptually blurred will repre-
sent the image appearance from a distant observer positioning, on the other hand,
properties obtained from the images perceptually sharpened will represent the image
appearance from an attentive process of the observer across the image and from a
close observer positioning to the target. The proposed local features are the same as
those used to represent gray-level texture images.

Finally, the on-line colour constancy algorithm developed has more practical than
theoretical implications. A linear diagonal model is applied and adapted to the special
constraints of a scan line camera. Although its inherent simplicity, it is completely
indispensable for any real application where a classi�cation catalog pretends to be
stored for a long-term period.

On the basis of the scienti�c work in this thesis, two practical derivations have
been addressed on inspection problems:

1. Ceramic tile classi�cation: We have established the basis for a future system
for fully automatic system in this scope. A simpli�cation of the general schema
de�ned for colour texture has been used to grade a large set of samples of ceramic
tiles, validating this approximation.

2. Printing quality inspection: We have de�ned the �rst steps to quantify the
banding e�ect in commercial printers. This is done using the properties of the
de�ned operators, which improve the colour distribution of the images consid-
ering spatial relationships. This takes us to a better interpretation of the degree
of banding error.

Once, we have enumerated and commented the most important contributions of
this work, let us enumerate other minor contributions and conclusions we want to
highlight from all the work:
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� Several acquisition architectures has been tested and analysed before to get
a �nal solution. In this work we analyse a list of possibilities and common
problems arising when a digital colour acquisition problem is posed. The central
conclusions we want to enumerate are the importance of designing criteria that
have to take into account when de�ning such an architecture:

{ The complexity or almost the impossibility of acquiring an homogenously
illuminated surface with a matrix camera.

{ The problems on the sensor calibration of some commercial cameras.

{ The high red-sensibility of commercial CCD's that sometimes implies to
introduce special �lter corrections at the sensor input, resulting in an loss
of light intensity.

{ The spatial non-homogeneities introduced by the optic systems: chromatic
aberrations, vignetting e�ects, etc.

{ The non-homogeneous pro�le provided by light line �ber optics.

{ The in
uences of spectral distributions of the lamps when they are com-
bined with other problems enumerated before, e.g, the red spectral dis-
tribution of a tungsten halogen lamp, added to the special sensibility of
CCD's to red inputs increases the needs of �ltered inputs.

� Some important corrections are needed when working with CCD cameras with
high colour precision, as it is the removing of the dark current. While this
is a common matter in astronomy where high precision is also required for
photometric measurements, it is not as common in computer vision.

� A diagonal linear model, or Von Kries adaptation model, is the simplest solution
to deal with the colour constancy problem. However, most of the commercial
CCD cameras does not include completely sharpened sensors. To guarantee the
suitability of this diagonal model we have built the sensor transformation that
assures sharpened responsivities for a speci�c line scan camera.

� To compute the sharpening transformation the sensitivities of the camera sen-
sors have been recovered. The method used has been based on a least-square
approach. The main problems concluded from this methodology arises from the
need of design information of the CCD that should be provided by the camera
manufacturer that is not always available, and the need to introduce important
constraints due to the generality of the basis functions.

� A wide review of psychophysical bibliography has been done to deal with the
perceptual implications of the colour induction phenomena. Although there is
an increasing number of works that deal with this issue, there are still some
measurements that should be done, in order to be able to have a tabulation on
how chromaticities of a large set of basic colours change in front of a large set
of inductors. This should be done for a wide set of di�erent spatial frequencies
conditions.
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Doing research and engineering activities provokes to open new issues to address.
In our case some of the future research directions are

� To �nd a model to combine contrast and assimilation induction in a scene. As we
are involved in computer vision it converts to a perceptual sharpening/blurring
problem. Our �rst thought is that a multiresolution approach is needed to select
those areas of the image assigned to each e�ect.

� Sharpening operators have been de�ned to simulate perceptual human vision but
their parameters are left open. Although we have demonstrate their usefulness,
psychophysical work is needed to evaluate the validity of this model to match
the Human Visual System. In this case the magnitudes and ratios between
parameters have to be investigated.

� To go deeply into the �eld of dynamic clustering to give response to many
industrial applications where the clustering has to be done without a priori
information. Although with the current results, the on{line surface inspection
can be done, the training process of the classi�er has to be simpli�ed to be
operative.

There also exists open engineering problems that have to be studied

� In the case of ceramic tile inspection, to collect and analyse the prior and pos-
terior samples of the creation of a new grade is created by the production line.
Without these data it is not possible to address the problem of a true on{line
inspection.

� In the case of printing quality quanti�cation, larger tests have to be done to
validate the �rst results presented, and to evaluate the weight of the proposed
parameters in the �nal quantisation.

� To look for new methods to recover camera sensor sensitivities in a high demand-
ing application. These methods should keep the process as simple as possible
for being feasible their use in industrial problems.

� To investigate the e�ects of the optics distortions in the recovery of the sensor
sensitivities, and thus on the �nal spectral sharpening transform.



Appendix A

Classi�cation method

As our interest is the capacity of the representation of texture and colour information
simultaneously, we will not focus on the classi�cation methods. Although there exists
many classi�cation approaches [26], considering the nature of the problem we found
that a discriminant analysis method was a correct chose. We will need a set of samples
to characterise the classes (the learning set) that will be selected randomly from the
whole set of each class.

Discriminant analysis can cope with problems where the main characteristics of
classes are not a priori known, prototyping classes from the learning sets. The selection
criterion of these prototypes has to provide the maximum discrimination ratio overall
the learning set. Moreover, distribution of features is unknown, so we have to use a
non-parametric discriminant analysis method [63, 74]. One of the methods that �ts
these constraints is the one based on Fisher discriminant functions. With Fisher's
approach there is no need of a priori knowledge of data and it is able to select the
best representation maximising the ratio between the inter-class covariance and the
intra-class covariance. A linear transform W is applied over the feature vector x of
a particular image obtaining a new representation, y = Wtx, in a new space where
discrimination capability has been maximised.

The linear transformation, W, which optimises the discrimination, is obtained
by calculating the most signi�cant eigen vectors of the matrix S�1w Sb, assuring the
maximisation of the following ratio:

WtSbW

WtSwW
; (A.1)

whereWt stands for the transpose ofW, Sw is the within data sparse matrix de�ned
as:

Sw =

cX
i=1

X
xk2Ci

(xk � �i)(xk � �i)
t ; (A.2)

where c is the number of possible classes and Ci is the set of vectors that are used
as learning samples in the i class.The Sb matrix is the between class sparse matrix,
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which is de�ned as:

Sb =

cX
i=1

Ni(�i � �)(�i � �)t ; (A.3)

where �i is the mean vector of the samples of the i class, Ni is the number of learning
samples in the i class and � is the global mean vector.

We extract the feature vector from an input image, x, and we assign it to the j
class if

jWtx�Wt�j j < jW
tx�Wt�ij 8 i 6= j : (A.4)

A previous step on the classi�cation process is to choose those variables that are
signi�cative of the data. Many variables can be used but few of them will be uncor-
related or will be homogenous inside each group. The best way to that is to choose
the combinations of variables that best classi�es the learning set of samples. This
is very time consuming and can not be carried out for many variables. Statistics
broach this problem with a stepwise approximation. It begins by selecting the indi-
vidual variable which provides the greatest univariate discrimination. Then all the
remaining variables are paired with the selected one to select the pair that best dis-
criminates the data. This procedure is done until there is no more variables or the
contribution to the classi�cation is meaningless. Some test can be done to look for
the best discriminating variable, but is has been shown that the results are nearly the
same and conclusions vary slightly. We have used SPSS statistical software to do the
classi�cation process, which implements Wilks's lambda to test variables:

� =
j Sw j

j Sw + Sb j

where j A j denotes determinant of matrix A. The best discriminatory value is 0
and 1 when variables are useless. Further details on the classi�er can be found in
[26, 74, 63].



Appendix B

Tile samples

In this appendix we depict some samples of the ceramic tiles models used in section
5.6.

commercial number of number of number of
name pigments grades tiles

Duero 2 12 120
Tiber 4 10 120
Cinca 3 3 50
Orinoco 3 11 101
Ohio 2 7 72
Mijares 3 3 51

Table B.1: List of model tiles used in the ceramic tile classi�cation problem.
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Figure B.1: Tiber model. Classes are presented on rows.
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Figure B.2: Duero model. Classes are presented on rows.
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Figure B.3: Cinca model. Classes are presented on columns.
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Figure B.4: Orinoco model. Classes are presented on rows.
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Figure B.5: Ohio model. Classes are presented on rows.
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Figure B.6: Mijares model. Classes are presented on columns.
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