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Abstract

In this paper we show the equivalence of three tech-
niques used in image processing: local-mode finding,
robust-estimation and mean-shift analysis. The computa-
tional common element in all these image operators is the
spatial-tonal normalized convolution, an image operator
that generalizes the bilateral filter.

1. Introduction

The luminance values in a local neighborhood are often
from two distributions: the foreground distribution and the
background distribution. Calculating the average of all lu-
minance values is therefore bound to smooth the boundaries
of the depicted objects.

The histogram of the luminances in the neighborhood of
a point will show two peaks. Finding the mode (local max-
imum) in the histogram that is most likely to represent the
distribution that the point belongs to, leads to local mode
filtering, a technique that is shown to result in visually im-
pressive results (see van de Weijer et. al. [9]).

A way to circumvent mixing the values from foreground
and background distributions is to consider some of the val-
ues found in the local neighborhood as statistical outliers.
Robust estimation of local image structure has been used in
the past (see Besl et. al. [1]). In recent years robust estima-
tors in connection with non-linear diffusion techniques have
been used successfully (see Black et. al. [2]).

The connection between mean-shift analysis and local-
mode estimation is known for some time (see Cheng [3]).
Mean-shift analysis is used with success in several early vi-
sion tasks (see [4]). The connection between mean-shift
analysis and robust estimators has not been reported in lit-
erature to the best of our knowledge.

In this paper we show the equivalence of these three tech-
niques (local-mode finding, robust-estimation and mean-

shift analysis) as they are used in early vision. The com-
putational common element in all these image operators is
the spatial-tonal normalized convolution, an image opera-
tor that generalizes the bilateral filter introduced by Tomasi
and Manduchi [8].

The connection with local-mode estimation firmly sets
our work in the context of locally orderless images as
they are introduced by Grifin [5] and Koenderink and Van
Doorn [7]. The connection with robust estimation of lo-
cal image structure allows us to look at higher order image
structure as well. Finally the connection with mean-shift
analysis brings in a wealth of results concerning the well-
posedness, stability and accuracy of the iterative numerical
schemes that are used.

2. Spatial-Tonal Normalized Convolution

Tomasi et al.[8] introduced the bilateral filter as an in-
tuitive appealing generalization of the (Gaussian) convolu-
tion. In this section we follow their line of thought to in-
troduce the spatial-tonal normalized convolution that is an
generalization of the bilateral filter.

Low pass filtering (smoothing) of an image f results in
the normalized convolution:

Jra F(¥)v(x —y)dy
Jrav(x—y)dy

Here we did not assume the kernel v to be normalized.

A well-known disadvantage of linear filtering is that not
only the noise is reduced but also that the image structure
is smoothed. Consider the example of an image showing a
detail of a scanned text (Fig. 1). The black lines are small
and the grey values from two distributions will be mixed for
all but the smallest neighborhood sizes. This will lead to to
the weighted mean of the grey value of the text and the grey
value of the white paper.

The bilateral filter prevents the mixing of two grey value
distributions by introducing a tonal weight. The tonal
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Figure 1. Noise text image patch. In a. a noisy
textimage patch is shown. In b. the histogram
of the image patch and in c. a smoothed ver-
sion of the histogram is shown.

T

weight depends on the tonal distance from the center point.
Let w be the tonal kernel that maps tonal distance to tonal
weight (just like the spatial kernel maps spatial distance to
spatial weight), then the bilateral filter is defined by:

Jra F¥) v(x = y)w(f(x) — f(y)) dy
Jrav(x = y)w(f(x) — f(y)) dy

Note that the value f(y) in the neighborhood of the central
point x is compared with the value f(x) to calculate the
tonal weight w(f(x) — f(y)). This choice assumes that
the central value f(x) is more or less noise free. Itis a
questionable assumption given the fact that we are building
a noise suppression filter and therefore we should not take
the central value as a good estimate for the ‘real’ value.

Therefore we allow for a second ‘input image’ g that is
used as the reference tonal value in calculating the tonal
weight. The assumption is that the value g(x) provides a
better estimate of the ‘real’ value then the value f(x). This
leads to the following definition of the spatial-tonal normal-
ized convolution (henceforth abbreviated as the STN convo-
lution).

1)

Definition 1 (Spatial-Tonal Normalized Convolution)
The spatial-tonal normalized convolution of an image pair
[£, g] using the kernel pair [v, w] is given by:

_ e f3) v(x —y) wlg(x) - f(¥)) dy

el el = T s —3) ol — 7)) dy
The STN convolution is easily implemented and shows
some remarkable properties in practical applications. See
Fig. 2 for some examples of the STN convolution.

In all examples in this paper we will use [v,w]
[G?, G?] with G* the spatial Gaussian kernel at scale s and
G? the tonal Gaussian kernel at scale ¢.

We may observe that: (i) for [f, g] = [f, f] the STN con-
volution equals the bilateral filter, (ii) for and [v, w] = [v, 1]
(i.e. Gt fort — oo) we take all grey tones equally important
and then the STN convolution reduces to a classical convo-
lution f x v and (iii) small details, like lines and corners, are

Figure 2. Spatial-tonal normalized convolu-
tion. On the left images corrupted with noise
and on the right the result of the STN convo-
lution.

much better preserved compared with the classical (spatial)
Gaussian convolution. The spatial scale is of little influence
on these properties.

3. Robust Estimation of Local Image Structure

In a zero order approximation we assume that locally an
image is constant, i.e. f(x +y) = fo for small y. Due to
noise we do not trust fo to be equal to f(x), instead we will
estimate that value from all neighboring values. A linear
least squares estimate selects the fo(x) that minimizes the
error:

(o) = [ (F) = folx)*G*(x = y)dy

Here we have used a Gaussian spatial ‘soft aperture’ G*°
to select a local neighborhood. Differentiating the above
quadratic error term e with respect to fo and solving for
8¢/ fo = 0 we obtain:

x _ fRd Gs X— )dy
fO() - fRd dy

- Rdf<y) G*(x —y)dy = (f *G*)(x),

i.e. the Gaussian convolution provides a least squares esti-
mate of the zero order local image structure.
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In case the image is corrupted with noise that is not nor-
mally distributed the LSQ estimate is known not to be an
optimal estimate. This certainly is true for the situation that
we are not dealing with noise but with the situation that the
local neighborhood contains values from more then one dis-
tribution.

The constant image patch model then is not sufficient
anymore. A principled solution then would be to model the
local image patch as a combination of (say) two constant
regions. In that case not only the value per region has to be
estimated but also the geometry that separates one region
from the other. A well-known example of a method that
follows this scheme is the Hueckel edge detector [6].

Here we follow a less principled route. We adhere to the
one-distribution constant image patch model but we allow
some values in the local neighborhood to be identified as
‘outliers’. To that end we will use robust estimation tech-
niques. Instead of using a quadratic error norm that empha-
sizes large errors, a robust error norm will be used that does
not take observations far from the values predicted by the
model into account. We will use the following ‘Gaussian’
error norm:

p'(p) =1 —exp (—i) )

that leads to the following robust error measure:

(o) = [ FU) = fax)G°(x - y)dy
Rd
Differentiating € with respect to fo and solving for
de/d fo = 0 leads to:

[ 6~ £o(0)G" (x - y)dy = 0

where ¢! is the derivative of the robust error norm. For the
Gaussian error norm in Eq. (2) we have:

dp' p p°
t = — = — —_—
¢ (p) - dp t2 exp( 2t2

Substituting this in the equation de/d f, = 0 results in:

) Jra F(¥) exp(—i(f(y);t’;o(x))z) G*(x — y)dy
X) =
0 Jo exp(—%) G5 (x — y)dy

@)
The above implicit expression for fo(x) is of the form fo =
F(fo) and can be solved using fixed point iteration (also
known as functional iteration).

Given an initial estimate f© of the zero order local struc-
ture we may iterate fi+1 = F(f?) until stability to find fo.
An obvious choice for the starting value of the iteration is
the value f(x). This leads to the following theorem:

Theorem 2 (Robust Estimation of Zero Order Local Im-
age Structure) A robust estimator of the zero order local
image structure is obtained as the asymptotic result of the
the following iteration of the STN convolution:
=5 =1 6,6Y

There are two important observations to make. The tonal
scale in the STN convolution turns out to be the scale of
a robust error norm. Secondly, in the iteration of the STN
convolution only its second argument is changed. The spa-
tial aperture thus is constant in the iteration process.

Robust estimation of local image structure is not new in
the image processing context. Besl et al. [1] in 1989 de-
scribe the principles. What is new in our method is the use
of Gaussian apertures (both spatial and tonal apertures) and
the connection to mean-shift analysis and the spatially lo-
cal histograms (i.e. a tonal density framework). The gen-
eralization to higher order local image structure within the
same framework of STN convolutions will be reported in a
forthcoming paper.

4. L ocal-M ode Estimation

Consider again Fig. 1. The grey value of the central point
is marked with an arrow in the histogram in the middle and
the smoothed histogram on the right. It is evident that the
local mode closest to the grey value of the central point is a
far better estimate of the “true’ grey value then the average
of all grey values.

In this section we will show that iterating the STN convo-
lution does just that: find the tonal local mode in a smoothed
(spatial local) image histogram.

First we consider the STN convolution for infinite spatial
scale,i.e.v = 1:

_ JeaF¥) wlg(x) = f(y)) dy
[f:g]’i‘*[]-,TU](X) - RfRdw(g(X) _f(y)) dy

Instead of integrating over the spatial domain we may inte-
grate over the codomain (the grey value range):

_ Jephs(p) w(g(x) —p) dp
Joahy () w(g(x) —p) dp
where hy(p)dp is the area of R? with grey values in the
range from p to p + dp. l.e. hy is the image histogram. We
can rewrite the above expression:
Je @ hs(9(x) — q)) w(q) dg
[gl=[Lw](x) = g(x)-
L o] [1,w](x) &) Jehs(9(x) — ) wla) dg

(
Forw = G* we have ¢G*(q) = —t20,G*(g) and we obtain:

280y * GY)(g(x))
(hy * G (9(0)
90x) + #(@log hy * G)(9(x))

[, g] < [1, w] (x)

[f,91=[1,G*l(x) = g(x)+
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We thus see that the above STN convolution implements a
gradient ascent in the smoothed histogram hy * G.

Theorem 3 (Spatial global, tonal local mode finding) The
tonal local mode in the spatial global image histogram & ¢ =
G? is found by iterating the STN convolution:

=5 =166
until stability.

Because v = 1, the histogram is equal for all positions in
the image, it is only the initial grey value in the iteration
process that is dependent on the position (and with that the
result of the iteration process). Tomasi et al. [8] already
showed that the bilateral filter with a spatial scale that en-
compasses the entire image is equivalent with a histogram
transformation. The above theorem shows that their result
is the first iteration in a local mode finding process.

The image operator defined in theorem 3 acts as an image
segmentation operator where the tonal domain is segmented
in regions each containing one local mode in the (smoothed)
image histogram. All the tonal values in such a region are
replaces with the tonal value of the local mode in the his-
togram. Essentially this operator thus performs a watershed
segmentation of the smoothed image histogram.

Instead of looking at the spatial global histogram we can
look at spatial local histograms. Again we use a Gaussian
‘soft aperture’ G®. Let hy(x) be the spatial local image
histogram, then we have:

Theorem 4 (Spatial local, tonal local mode finding) The
tonal local mode in the spatial local image histogram
hy(x) * G* is found by iterating the STN convolution:

=15 =116, 6"
until stability.

This theorem thus shows that robust estimation of zero or-
der local image structure is equivalent with finding the tonal
local mode in the smoothed spatial local image histogram.

5. Conclusions

We have shown that the spatial-tonal normalized convo-
lution is a generalization of the bilateral filter. The STN
convolution when iterated until stability proves to be equiv-
alent to robust estimation of zero order local image struc-
ture and to local mode finding in the spatial local image
histograms.

In this paper we assumed scalar images. However the
theory is easily generalized to color images. In the defini-
tion of the STN convolution the images then become vector
valued. The weight functions v and w remain scalar func-
tions. Replacing f(x) — g(x) with ||f(x) — g(x)|| then

Figure 3. Iterating the spatial-tonal normal-
ized convolution. On the left images cor-
rupted with noise and on the right the result
of the iterated STN convolution (i.e. finding
the local mode, i.e. robust estimation of the
zero order image structure).

leads to an expression for the STN convolution that is valid
for color images as well. In fact all examples shown in the
paper are color images.

The interpretation in terms of robust estimation of local
image structure makes it feasible to generalize the frame-
work to robust estimation of higher order local image struc-
ture. This will be reported in future work.
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