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Abstract

Safety belts are specific fabrics manufactured ensuring the highest perfor-
mance. Their manufacturing process not only has to assure its endurance to
high tensions strength, but also has to guarantee its correct visual appear-
ance. Safety belts must not contain fibre breaks, knots, thickness variations,
etc. Such defects imply the non-fulfillment of rigorous safety standards.

This paper describes the development of a computer vision inspection sys-
tem, which control safety belts at a speed rate of 2 m/s. This inspection rate
has been achieved by means of a parallel architecture and the use of optimized
vision algorihms
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1 Introduction

Belts are made in a normal textile process where wrap and weft are woven. The belt
structure changes radically from customer to customer because each one has its own
models (see figure 1). A very demanding objective in safety belt manufacturing is an
error—free final production due to quality are not only related to visual appearance
but also to mechanical properties strongly related to safety.We have categorized
defects according to its visual appearance and location, some examples are shown in
figure 2. These defects share similarities with those of the textile industry [1] with
some special features and cases specific of this fabric. To achieve the error—free goal,
quality control of the production has to be extremely reliable. Currently, this task is

mostly carried out by laser inspection systems. These systems examine the belt while



it passes through a set of laser diodes (at a speed up to 2 m/s). When inspection
system detects one defect, the traction system that moves the belt is stopped and
a human operator will repair the error if it is possible, otherwise they will mark
and the section of the belt containing it will be cut afterwards. Those systems can
only detect defects that jut out of the belt profile, without taking into account any
plane texture error. Another important drawback is that these systems are not able
to quantify precisely the size of the detected defects, making difficult to establish a
good acceptance/rejection criterion. Moreover, when there is an extraordinary rate
of false reject defect, the systems constantly stop the motor and all the intermediate
continuous belt buffers in the manufacturing process fill.

Therefore, the key aspects that an automatic inspection system should incor-
porate are: (i) to detect the whole set of possible defects that can be done in the
production, (ii) to give a useful information to the human operators (as for example
where the defect is placed or statistics about the production), (iii) to be flexible to
inspect new type of belts, and finally, (iv) to be easy to set the right set of inspection
parameters, minimizing the number of false accepts and rejects, these points are the
base of the new system machine vision developed.

In section 2 we explain the different parts of the system and the hardware solu-
tions adopted. Section 3 explains the algorithms proposed to solve the inspection
problem. Section 4 is a brief summary of the results and in the last section we sum

up to some conclusions about our proposed system



Figure 1: Three different types of belts

(a) (b)

(c) (d)

Figure 2: (a) irregular contour (edge defect), (b) weft not woven (texture break),

(c) fraying edge, (d) knot and stains.

2 Image Acquisition System

Due to the high speed requirements of the system, a parallel architecture has been
adopted. The image acquisition system is composed by a total of four B/W progres-
sive Jai M-30 cameras, two for each belt side. Each one of the cameras is connected
to a slave computer, see figure 3, where the images are processed by a Matrox Me-
teorII/MC board. When one of the four slaves detects a defect, it is reported to
the master computer which compiles the partial results, synchronizes the errors (the
same error can be detected by different slaves) and stops the production line when
the error reaches the stopping point.

The four slaves and the master are standard PCs with an Intel Pentium III

processor running under the Windows N'T operative system.



images

o

cam splitter

visual inspection system
hackllgh||:|

belt J 5 production line —f——
Stopping point
fon= ‘
master
ClTU Cl‘)U Cl‘)U CI" U

Figure 3: Scheme of the visual inspection system

In order to be able to detect all the different kinds of flaws that may appear on
the woven belts, two different views of each side of the belt are acquired. For each
side, one of the cameras takes a frontal image of the belt surface while the other
provides a tangential view.

The frontal image allows the detection of all the flaws that do not jut out over the
surface of the belt, such as knots, missing threads, stains and, in general, any kind
of texture pattern failure. The frontal images are also used to study the uniformity
of the belt edges. Thus, defects that only appear on the belt edges, such as loose
threads and variation on the width of the belt, can also be detected.

The purpose of the tangential image is the detection of loose threads on the
surface of the belt, which are not visible in the frontal view.

An overview of the acquisition system used and an example of each kind of image

(frontal and tangential) can be seen in figure 3.



2.1 Illumination system

Both frontal and tangential images are acquired under diffuse backlight illumination
in order to obtain high contrast images. Hence, the region of the image correspond-
ing to the belt can be easily segmented from the background.

Since the aim of the tangential subsystem is only the detection of loose threads
over the belt surface, the backlight illumination is enough for tangential images.

However, in the frontal images, we need a high resolution view of the texture
pattern of the belt. This implies the use of direct light over the surface of the belt.
Therefore, the frontal subsystem also includes a diffuse frontal coaxial illumination
(beam splitter) in order to avoid spatial light variations and providing a constant

light over all the surface of the belt.

2.2 Image acquisition speed

All the cameras are configured in partial scan mode in order to obtain “narrow”
images. The election of the image sizes was conditioned by two factors. On the one
hand, there is a precision requirement on the localization of the flaw. After a defect
is detected, the production line should be exactly stopped when the defect reaches
the stopping point. The accuracy required for this stop is £2 cm for the proposed
system. This means that the images should not include more than 2 ¢cm of belt in
order to fulfil the precision requirement. Thus, the frontal image is 768 x 110 pixels
which correspond to a length of 1.6 cm of belt. For the tangential images, a size

of 768 x 66 pixels was chosen. In this case, the portion of belt seen on the images



depends on the fitting up of the production line in front of the camera.

On the other hand, partial scan mode allows acquiring up to 360 frames per
second. As it was mentioned before, the maximum traction speed of the line is 2
m/s This means that, for the frontal cameras, we should process at least 125 images
per second in order to inspect all the belt surface. This implies that each image has

to be processed in 8 ms.

3 Defect Segmentation Algorithm

In this section we present a set of optimized algorithms [2] adapted to each part
of the inspected belt that allows us to get a maximum performance of the whole
system.

The implemented algorithms are very basic and can be found in fundamental

books of computer vision [3, 4] and machine vision [5, 6].

3.1 Tangential

Tangential cameras give information mainly of bad woven, frayed threads and bulky
zones. These defects jut out the profile shown in the tangential views of the belt,
and have to be detected and also quantified to overcome the facilities of existing
laser inspection systems. This task can be done almost directly if the traction
system of the production line assures an stable position of the belt profile along
time. In that way, the inspection process reduces to detect and analyse the belt

pixels over a given image coordinates. However, having a fixed position for the
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Figure 4: Sequence of the tangential process: (a) initial image, (b) threshold, (c)

morphological filtering, and (d) difference between threshold image and the filtered

image.

belt profile requires the use of stabilizing components in the traction system, that
prevent from obtaining high-contrast images of the belt. For this reason, a method
that presents independence of the position of the belt profile has been developed.
The method requires the belt profile to remain approximately parallel to the image
frame, a condition assured by the traction system. Given an image, its pixels are
firstly classified into belt or background pixels. Secondly, a morphological opening
(equation 1) [7] is applied to belt pixels to obtain the correct profile as result of this
operation (see figure 4(c)), note that it doesn’t have to correspond exactly to an
straight line.

Xp=(X©oB)aB. (1)

where B is the following structuring element (11111)
Finally, this correct profile is used to detect and to characterize defects. Figure
4 summarizes how the overall procedure is implemented in practice.

The initial classification of the image pixels is done by means of an adaptative



binarization algorithm. The image is first subdivided into small regions, where the
backlight illumination can be assumed as homogeneous. Then, the upper zone of
each region (which corresponds to the backlight illumination) is analyzed, and a
classification threshold is determined. Regions are then binarized, and the resulting
image is then compacted to 1 bit/pizel to perform the remainder process at a maxi-
mum speed rate. The opening operation using B is applied, and the resulting image
is XOR-operated with the original binary one, obtaining a resulting image where
defects are represented as blobs. Analyzing these blobs, defects are localized and
characterized, enabling to establish different acceptance/rejection criteria depending

on size, shape or localization.

3.2 Frontal

Frontal cameras are used to detect defects due to a bad weave process of the belts,
and to check regularity of contours. These errors are detected by processing different
regions of the belt image with an ad-hoc algorithm that focus on the specific errors
that the concrete region may suffer.

In all belt designs it is possible to distinguish three different regions, we will
call them: Contour, 1D Texture and 2D Texture (see figure 5), and each one has
associated a specific algorithm.

These regions are placed, for each new belt, at a learning stage, depending on its
design structure. These regions of interest are dynamically placed in each acquired
image in order to be independent the imprecise positioning of the belt. Following

subsections will describe the processing algorithms applied to each region.
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Figure 5: The three regions for frontal images where the inspection is done. Each

region has its specific algorithms.

(a) (b) (c)
Figure 6: (a) irregular contour, (b) edge detection (binarized), and (c) difference

between ideal and real straight line.

3.2.1 Contour defects

In the contour regions we try to detect frayed threads, knots and inhomogeneities
of the contour. To detect these defects we first determine the lines that join the
upper and the lower extremes of each belt side and we measure the error between
the ideal and real straight line (which is calculate a using finite differences in the x
direction). It gives us an objective criterion to detect this kind of errors (see figure

6).

3.2.2 1D-Texture

We will call 1D textures to those regions of the belt that can be analyzed as an

unidimensional signal. These textures are usually found along the borders of the
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belt and occasionally as an inside region, depending on the belt design (see figure
5).

Defects occurring in the 1D texture regions are detected as a change in periodicity
of the unidimensional signal. Since the periodicity of a signal is more easily analyzed
in the Fourier domain, we will apply the Fourier Transform to the unidimensional
signal and search for variations in this domain. In particular, defects will be detected
as variations of the dominant frequency in comparison to the learned parameters in
the definition stage.

To process these regions, represented by the image I, we first transforms it into
a unidimensional signal making the horizontal projection by accumulating the pixel
values of the texture into a column vector v, computed as:

v(i) = 3" 1(0.9) @)
j
The aspect of these vectors are shown in figure 7 (a) and (b).

Before to apply the Fast Fourier Transform (FFT) to v and in order to reduce
influences of the rectangular windowing of the unidimensional signal, we will first
multiply this signal by a Hamming function h [8], equation 4. Therefore, we com-

pute:
fi(k) = 3 D vuli) e ¥, (3)
for k =0,...,N — 1, being N the number of rows in I, and

vi(i) = v(i) - (0.54 — 0.46 Cos(NQiil)). (4)

The dominant frequency is selected as the value of k £ 0 where f}, takes its maximum

11
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(a) (b)
Figure 7: On the left of each figure we can see the 1D texture region, image I, in

the middle the unidimensional signal by horizontal accumulation, vector v, and on

the right the frequency spectra. (a) Correct Texture 1D , (b) Defective Texture 1D

value. Variations of this feature from the expected one allow us to detect defects in

1D textures (see figure 7).

3.2.3 2D-Texture

Frontal images are mainly formed by a bidimensional texture that gives to the belt
its appearance (see figure 1). Some of the defects detected from other viewpoints
such as tangential images also appear, but there are a new set of defects that can only
be seen in these images because they do not have any effect on the belt thickness.
All the errors on 2D texture regions have the same features, that is, they break the
periodicity of the bidimensional texture defined by the fabric. To detect them, as in
the section 3.2.2, we take profit of the fact that analysed region presents a repetitive
pattern.

The study of the lack of repetitiveness in this bidimensional texture regions
make us to confront an important problem. The high speed of the production

line requires that a very low processing time is assigned to the vision inspection
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system; otherwise, our inspection process would become a bottleneck. As we have
said before, we have 125 images per second of 768 x110 pixels, therefore we have 8
ms to process the image and deliver the result about its quality. This restriction on
processing time can be alleviate using several cameras acquiring different parts of the
belt at the same time. In that way, the increase of time obtained with a reasonable
number of cameras will not be enough to use general techniques for texture analysis
based on spectral methods as Gabor filters or wavelets transform [9, 10]. Rejecting
spectral methods, a first attempt can be learning in an initial stage a pattern of
the whole and correct texture in order to compare later with the acquired images.
But, due to the fact that these new images are not acquired at the same position
(horizontally, the belt can be moved along the spindle, and vertically, the acquisition
is not synchronized to the period of the texture), then, we need to register the two
images, the learned pattern and the image to be analyzed, and this is a high time—
consuming task. Previous considerations gave us the conclusion that we needed a
fast solution that can be adapted to slight position changes in the images as it occurs
in our problem.

The solution we have adopted is based on taking the same image that must be
analyzed as a pattern for such analysis, that is, the acquired image is the model to
itself. We take profit of this repetitiveness comparing several parts of the same image
avoiding changes in position. Firstly, in a previous learning stage, each bidimensional
texture of a belt is characterized by a displacement vector d=(d,, d,). Components
d, and d,, of this vector are the length of the repetitiveness period in each direction,

that is, any part of the image displaced by this vector is taken to a similar image
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Figure 8: Top: displacement vector pointing to similar regions; minimum difference

region 3

for different vectors used to calculate d; remainder for and area without defects
of 50x50 pixels and its contrast maximization (values are lower than 20% of the
maximum value). Bottom: the four regions used to avoid boundary effects; some
parts of the image are evaluated more than once, so we need several weights as show

the numbers.

area, see figure 8. In order to avoid boundary effects we split each texture image
in four overlapping regions. The model image is built moving each region to the
opposite corner in the image and averaging the results because some image areas
are computed more than once. The image and the model image are compared by
thresholding the absolute value of the difference. Next, we perform fast filtering
with morphological opening over the remainder. Then, computing some statistics

of the blobs we can detect different kind of defects related to this area.
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Figure 9: Top, defective textures. Bottom, result of the 2D—texture defect detection

algorithm.

Figure 9 shows some results of this part where defects are detected. Defective

areas correspond to the bigger white areas in the binary image.

4 Experiments and Results

The improvement achieved by the proposed system has been measured by the exe-
cution of different performance tests. These tests consisted of checking the results
given by the vision system, versus the laser inspection system in the first test, and
the vision system versus a human expert in a second test.

In the first case, the machine vision system was serially appended with the laser
system. This test let us show to the final user that the new system can detect more
defects without increasing the number of false rejections given by the laser system.

Second test allowed to evaluate the number of false acceptations produced by the
system. In this test, more than 17.000 strips were checked, each one being 3 meters
long. These strips are the final product given to customers to build the final safety
belt mounted on the car. The results showed that the operators found 120 strips

with some kind of errors (false acceptations, not detected by the vision system), this
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means 7.000 parts per million (ppm) (less than 1%) and a reduction of around 50%
of false acceptations with respect to the laser machine.

The other test done was to check, by human operators, the product that was
ready to be sent to the customers inspected previously by the machine vision system.
With this test it was possible to evaluate the false acceptations of the machine. In
this test, more than 17.000 strips were cheched, each one being 3 meters long. These
strips are the final product given to customers to build the final safety belt to be
mounted on the car. The results showed that the operators found 120 strips with
some kind of errors (false acceptations, no detected by the vision system), this mean
7.000 parts per million (ppm) (less than 1%) and a reduction of around 50% of false
acceptations with respect to the laser system.

Finally, in figure 10 we can see some results detected by the vision system where

defects are located.

5 Conclusions

The system we have presented in this paper is able to control the whole belt quality
at high speed, overcoming the performance of the previous laser system. This is
achieved subdividing the problem into few specific problems that require the process
of small images quickly. For each one of these specific problems we have developed
fast solutions, achieving the final solution compiling and integrating the different
results. We want to give special relevance to the 2D—texture analysis process and

its capability to measure the importance of a defect, allowing to establish reliable
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(e) (f)

Figure 10: Defects detected by the system(a) dip (broken texture), (b) irregular

contour (edge defect), (c) knot in surface (broken texture), (d) weft not woven to
the warp (edge defect), (e) thread lost in the weft (broken texture) and fraying edge

(edge defect), (f) stain (broken texture).
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acceptance/rejection criterion.

Presently, the rate of inspection is at 2m/s, and this is the current speed of the
production line. It means that the visual inspection process is not a bottleneck of
the system as it occurred with the laser inspection system. Finally, we want to
emphasize that the system uses an standard PC architecture, which means that in

the future its performance can be easily improved by a hardware upgrading.
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