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Abstract. In this paper we approach the problem of fast surface grading
of flat pieces decorated with random patterns. The proposed method
is based on the use of global statistics of color computed in the CIE
Lab space. Two other fast methods based on color histograms [1] and
Centile-LBP features [8] are introduced for comparison purposes. We
used CIE Lab in order to provide accuracy and perceptual approach in
color difference computation. Experiments with RGB were also carried
out to study CIE Lab reliability. The ground truth was provided through
an image database of ceramic tiles. Nevertheless, the approach is suitable
to be extended to other random decorated surfaces like marble, granite,
wood or textile stuff. The experiments make us to conclude that a simple
collection of global statistics of color in the CIE Lab space is powerful
enough to well discriminate surface grades. The average success surpasses
95% in most of the tests, improving literature methods and achieving
factory compliance. 3

1 Introduction

The background problem is to solve the question of surface grading of flat pieces
decorated with random patterns. These include surfaces from nature (wood,
marble or granite) and artificial surfaces (ceramic tiles or textile stuff). The aim
of surface grading is to split the production into different classes sorted by their
global appearance, which is crucial to achieve competitive quality standards.
Industries related with the manufacturing of these products rely the task of
grading on human operators. This grading is subjective and often inconsistent
between different graders [7]. Thus, automatic and reliable systems are needed.
Also, real time compliance is important in order to make systems able to inspect
the overall production at on-line rates.

In the last decade many approaches about surface grading were developed,
mainly for the industrial sectors of ceramics, marble, granite and wood. Bouk-
ouvalas et al [1][2][3] proposed color histograms and dissimilarity measures of
these distributions to grade ceramic tiles. No real time compliance was studied.

Other works were related with an specific type of ceramic tiles, the polished
porcelanic tiles, which imitate granite appearance. These works included texture
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features. Baldrich et al [4] proposed a perceptual approximation based on the use
of discriminant features defined by human classifiers at factory. These features
were mainly related to grain distribution and size. The method included grain
segmentation and features measurement. Lumbreras et al [5] joined color and
texture through multiresolution decompositions on several color spaces. They
tested combinations of multiresolution decomposition schemes (Mallat’s, dtrous
and wavelet packets), decomposition levels and color spaces (Grey, RGB, Ohta
and Karhunen-Loeve transform). Pefiaranda et al [6] used the first and second
histogram moments of each channel of the RGB space. This simple approxima-
tion, together with a deep studied inspection system, were able to comply time
requirements for on-line inspection. In Baldrich and Lumbreras’s works there are
no study about time compliance.

On wood grading, Kauppinnen [7] developed a method based on the per-
centile features of histograms calculated for RGB channels. These features are
also called Centiles. Kyllonen et al [8] made an approach using color and texture
features. For color they chose the above mentioned Centiles, and LBP (Local
Binary Pattern) histograms for texture description.

Lebrun and Macaire [9] described the surfaces of the Portuguese "Rosa Au-
rora” marble using the mean color of the background and mean color, absolute
density and contrast of marble veins. They achieved good results but their ap-
proach is very dependent on the properties of this marble. Finally, Kukkonen et
al [10] presented a system for the grading of ceramic tiles using spectral images.
Spectral images have the inconvenient of producing great amounts of data.

ground truth features  time study accuracy %

Boukouvalas  ceramic tiles color no -
Baldrich polished tiles  color/texture no 92.0
Lumbreras polished tiles  color/texture no 93.3
Penaranda polished tiles  color/texture yes -
Kauppinen wood color yes 80.0
Kyllonen wood color /texture no -
Lebrun marble color/texture no 98.0
Kukkonen ceramic tiles color no 80.0

Table 1. Summary of surface grading literature.

Many of these approaches were very specialized in a specific type of surface,
others did not achieve good enough accuracy, and others did not take into ac-
count the time restrictions of a real inspection at factory. As a result of this, we
think surface grading is still an open research field. In this paper we present a
generic method suitable to be used in a wide range of random surfaces; ceramic
tiles, marble, granite, wood, textile stuff, etc. The approach uses fast and sim-
ple statistics of color, achieving good results with a representative data set of
ceramic tiles. Thus, the method is appropriate to be implemented on systems
with real time requirements, typical in these contexts.



2 Lab Statistics

The presented method is simple, a set of statistical features describing color
properties are collected. The features are computed in a perceptually uniform
color space, the CIE Lab. These statistics form a feature vector used in the clas-
sification stage where the well known k-NN method [11] was chosen as classifier.

CIE Lab was designed to be perceptually uniform. The term ’perceptual’
is refered to the way that humans perceive colors, and 'uniform’ implies that
the perceptual difference between two coordinates (two colors) will be related to
a measure of distance, which commonly is the Euclidean distance. Thus, color
differences can be measured in a way close to the human perception of colors.

The images of the data set were acquired originally in RGB, then, conversion
to CIE Lab coordinates was needed. This conversion is made using the standard
RGB to CIE Lab transformation [12] as follows.

RGB to XYZ:
X 0.412453 0.357580 0.180423 | | R
Y | = [0.212671 0.715160 0.072169 | | G
Z 0.019334 0.119193 0.950227 | | B

XYZ to CIE Lab:
L=116(Y/Y,)Y/3 — 16
a = 500((X/Xn)'/% — (Y/Yn)'/?)
b=200((Y/Y,)'/? = (Z/Z,)"/?)

X, Y, and Z, are the values of X, Y and Z for the illuminant (reference
white point). We followed the ITU-R Recommendation BT.709, and used the
illuminant Dgs, where [X,, Y, Z,] = [0.95045 1 1.088754].

We proposed several statistical features for describing surface appearance.
For each channel we chose the mean, the standard deviation o(z) and the average
deviation ADev(z).

O ) 1L
o(z) = \| === ADev(z) = £ > Ly |z —m|

where z is the random variable, L size of the data set and m the mean value
of z values.

Also, by computing the histogram of each channel, we are able to calculate
histogram moments. We defined two blocks of histogram moments; one from 2nd
to 5th and the other from 6th to 10th. The nth moment of z about the mean is
defined as

L

pa(2) = D (20 = m)"p(z:)

i=1

where z is the random variable, p(z;), ¢ = 1, 2, ..., L the histogram, L the
number of distinct variable values and m the mean value of z.



3 Literature methods

For comparison purposes we selected two methods from literature: color his-
tograms [1] and Centile-LBP [8]. They are similar to ours, both are generic
solutions with low computational costs. Color histograms are 3D histograms
(one axis per space channel) which are compared using dissimilarity measures.
In [1] they used the chi square test and the linear correlation coef ficient.

2 _ Z (R;—S;)? r = Zi(zi—i)(yi—zj)
X" = 2. "R 1S; - \/Zl(zl,j)\/zl(%,g)

When comparing two binned data sets with the same number of data points
the chi square statistic (x?) is defined as above, where R; is the number of
events in bin 4 for the first data set, and S; is the number of events in the same
bin for the second data set. The linear correlation coefficient (r) measures the
association between random variables for pairs of quantities (z;,y;), i = 1,...,N.
The mean of the x; values is  and ¥ is the mean of the y; values.

The Centiles, are calculated from a cumulative histogram Cjy(z), which is
defined as a sum of all the values that are smaller than z or equal to « in the nor-
malized histogram Py (), corresponding to the color channel k. Finding a value
for a percentile is finding the x when Cj(z) is known, thus, requiring an inverse
function of C(z). Let Fj(y) be the percentile feature, then Fy(y) = C; ' (y) = =,
where y is a value of the cumulative histogram in the range [0%,100%)].

The Local Binary Pattern (LBP) is a texture operator where the original
3x3 neighborhood is thresholded by the value of the center pixel (figure 1b).
The values of the pixels in the thresholded neighbourhood are multiplied by the
weights given to the corresponding pixels (figure 1c¢). Finally, the values of the
eight pixels are summed to obtain the number of this texture unit. Using LBP
there are 2% possible combinations of texture numbers, then a histogram collects
the LBP texture description of an image.
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Fig. 1. Computation of local binary pattern (LBP).

In [8] Centile and LBP features were combined in one measure of distance
and then used the k-NN classifier. For Centile features they used the Euclidean
distance in the feature space. For LBP they used a log-likelihood measure:
L(S,R) = — SN} S,InR,, where N is the number of bins. S, and R, are
the sample and reference probabilities of bin n. The distances were joined by
simply adding them. Previously both distances were normalized using the min

and max values of all the distances found in the training set.



4 Experiments and Results

All the experiments were carried out using the same data set. The ground truth
was formed by the digital RGB images of 492 tiles acquired from eight different
models, each one with three different surface classes given by specialized graders
at factory. For each model there were two close classes and one class far to them.

Models were chosen representing the extensive variety that factories can pro-
duce, a catalogue of 700 models is common. But, in spite of this great number of
models, all of them imitate one of the following mineral textures; marble, granite
or stone. Fixed pattern models are a subset of random pattern models.

classes tiles/class size (cm) pattern aspect

Agata 13, 37, 38 16 33x33 fixed marble
Berlin 2,3, 11 24 16x16 random granite
Firenze 9, 14, 16 20 20x25 random stone
Lima 1,4, 17 24 16x16 random granite
Oslo 2,3, 7 24 16x16 random granite
Toscana 13, 18, 19 16 33x33 random stone
Vega 30, 31, 37 20 20x25 fixed marble
Venice 12, 17, 18 20 20x25 random marble

Table 2. Ground truth of ceramic tiles.

Digital images of tiles were acquired using an illumination system spatially
and temporally uniform. Spatial and temporal uniformity is important in surface
grading [1,4,6] because variations on illumination can produce different shades
for the same surface and then misclassifications. The illumination system was
formed by two special high frequency fluorescent lamps with uniform illumi-
nance along its length. For overcoming variations along time, the power supply
is automatically regulated by a photoresistor located near fluorescents.

Two sets of experiments were made to demonstrate the feasibility of Lab
statistics for solving the problem of surface grading. Firstly, experiments of
statistics where carried out for the CIE Lab and RGB spaces. Classification
was made using the half of the samples as training set and the remaining half as
test set. Values of 1, 3, 5 and 7 were used for the k factor of the k-NN classifier.

The performance results of several statistics sets are shown in table 3. The
error rates were computed as the average error ratios achieved over all models.
More combinations of statistics were tested, but only the most prominent are
presented. The last two columns corresponds to the averaged error rate and the
95% confidence intervals [11] respectively. The table is divided in two blocks, the
first one corresponds with CIE Lab experiments. Here, the majority of sets have
confidence intervals under the maximum error rate of 5% which is the factory
requirement of performance. The best choice was to use the mean color plus the
standard deviation. Histogram moments did not introduce any improvement.
The second block collects the results of RGB which presents significant less
discriminative power than CIE Lab.



mean stddev avedev 2-5th ms 6-10th ms lab rgb error % 95% c.i

X x 132 [10.3, 16.4]
X X X 1.2 [0.33, 2.3]
X X X 3.0 (1.6, 4.7]
X X X X 3.2 [1.7, 4.9]
X x X X x 3.3 [1.9, 5.2]
X X 13.4  [10.4, 16.6]
X X x 7.9 [5.7, 10.6]
X x x 7.3 [5.1, 9.9]
X X X X 5.9 [4.0, 8.3]
X X X X x 6.7 [4.6, 9.2]

Table 3. Accuracy results of statistics sets in CIE Lab and RGB spaces.

In second place, experiments for color histograms and Centile-LBP were car-
ried out. Once again, classification was made using the half of the samples for
training and the remaining half for testing. In Centile-LBP experiments the
original log-likelihood formula, the chi square test and the linear correlation
coef ficient were used for measuring histograms differences.

The results of table 4 show that Centile-LBP achieves the best error rates
when using RGB, but none of both methods achieves factory compliance because
all of their confidence intervals surpass the max error rate of 5% required at
factory. Comparing with table 3, Lab Statistics presents significant improvement
in performance an also is the only method with confidence intervals complying
the max factory error.

Chi Corr Log Lab RGB error % 95% c.i

Color Histograms x X 9.7 [7.2, 12.6]
Color Histograms X X 11.5  [8.8, 14.6]
Color Histograms x x 11.1  [8.5, 14.2]
Color Histograms X X 124 [9.5, 15.5]
Centile-LBP X X 5.6 [3.6, 7.8]
Centile-LBP X X 5.1 [3.3, 7.4]
Centile-LBP X X 8.7 [6.4, 11.5]
Centile-LBP X X 5.3 [3.5, 7.6]
Centile-LBP X X 4.6 [2.8, 6.6]
Centile-LBP X X 6.7 [4.6, 9.2]

Table 4. Accuracy results of Color Histograms and Centile-LBP.

Figure 2 shows the best performance response of each method itemized by
models. Color histograms and Centile-LBP approaches, contrasted with Lab
Statistics, present greater irregularity and more models are over the factory
max error.
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Fig. 2. Best accuracy results of Lab Statistics, Color Histograms, and Centile-LBP.

Finally, we measured the timing costs of the methods using a common PC (see
figure 3). All the approaches have a theoretical computational cost of @(n) + C,
where n is the image size and C is a constant which varies depending on the
approach. Lab statistics and color histograms were penalized because they need
the conversion from RGB to CIE Lab. But, if we take away the RGB to CIE
Lab conversion then Lab statistics achieves the best timing response.

5 Conclusions and further work

A fast method for the application of surface grading has been presented. The
method uses simple statistics computed in a perceptually uniform color space,
the CIE Lab. This approach performs well discriminating correctly surface grades
among several types of surfaces representing a common catalogue of ceramic tiles.
The benefit of using CIE Lab is demonstrated comparing with RGB results.

Other two methods coming from the literature were implemented and tested
for comparison purposes. From the point of view of performance, color his-
tograms achieved the worse results while Centile-LBP had intermediate results.
The best accuracy response corresponded to Lab statistics, which also was the
only method achieving factory compliance in performance with confidence inter-
vals under the max error limit. From the point of view of timing costs, Centile-
LBP had the best response, but Lab statistics was not too far away and timing
can be easily improved transferring the RGB to CIE Lab conversion to hardware
or using parallel processing systems.

Further work will extend the image database with more models and samples.
Also, a deep study of real time compliance will be made simulating factory load
and using parallel processing systems based on cluster and MPI technology.
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Fig. 3. Timing for the best accuracy results of each method.
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