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Abstract. In this paper we present a new approach to computational
colour constancy problem based on the process of surface matching. Clas-
sical colour constancy methods do not usually rely on this important
source of information and they often use only partial information in the
images. Our proposal is to introduce the use of a set of canonical sur-
faces and its matching versus the content of the image using a ‘relaxed’
grey-world assumption to perform colour constancy. Therefore, our ap-
proach takes into account information not considered in previous meth-
ods, which normally rely on statistical information in the image like
highest luminance or image gamuts. Nevertheless the selection of the
canonical surfaces is not a trivial process and should be studied deeply.

1 Introduction

The human visual system has the capability to perceive the same colour for a
given surface regardless the colour of the illuminating light. This is a fundamental
property to colour vision and pursues the perception of a stable coloured world,
even though the stimulus reaching the retina differs for the same surface under
different conditions of illumination. The perceived colour of a white patch under
a blue sky compared to the same patch in a room with a light bulb is perceived
as the same colour. Actually in the first situation the reflected light reaching the
eye has a bluish spectrum compared to the reddish reflected light of the second.
This ability is known as colour constancy, the constant appearance of surface
colours despite changes in the colour of the illumination. The mechanisms of
human colour constancy have not yet been completely understood, and there
are different approaches trying to explain them [1–4].

2 Background

RGB images are formed by the light reflected from different surfaces reaching
three sensors that integrate the incident light at different wavelengths. The color
of a surface depends on the surface reflectance and the colour of the incident light.
The aim of computational colour constancy is to find an illuminant invariant de-
scription of a scene from an image taken under unknown lighting conditions.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 192–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Relaxed Grey-World: Computational Colour Constancy by Surface Matching 193

This process is often performed in two steps: (1) estimate the illuminant param-
eters and (2) use those parameters to build illuminant independent description
of the scene. For these methods a canonical illuminant must be defined, i.e. an
illuminant for which the camera is balanced and the colours appear in a trust-
worthy form. Under this illuminant, the RGB values of an image of a scene can
be taken as descriptors of the surfaces. There is a wide literature on computa-
tional colour constancy methods [5–10]. None of them performs perfectly on all
kind of images under weak assumptions.

Many of these methods directly estimate the illumination change from the
unknown illuminant to the canonical illuminant. Considering the von Kries adap-
tation model [11], the transform of an illuminant change can be modelled by a
linear diagonal model, as proven in [12]. For example, the RGB response of a
camera to a white patch under an unknown illuminant is (RU

w , GU
w , BU

w ) and the
response under the canonical illuminant is (RC

w , GC
w , BC

w ), the illuminant change
from the unknown to the canonical illuminant can be obtained by scaling the
three channels by RC

w/RU
w , GC

w/GU
w , BC

w /BU
w respectively. Thus, the colour of the

illuminant of an RGB image can be modified by a diagonal change (1),

(RC , GC , BC) =




α 0 0
0 β 0
0 0 γ







RU

GU

BU


 (1)

where α = RC
w/RU

w , β = GC
w/GU

w , γ = BC
w /BU

w . In a typical colour constancy
problem, we have acquired the image under an unknown illuminant,
(RU , GU , BU ), and try to obtain the surface descriptors, (RC , GC , BC). The
triplet (α, β, γ) is called a map, and knowing the actual map implies a guessing
of the unknown illuminant.

The different methods proposed in the literature can be sorted in different
classes regarding the assumptions they are based on. The first family of algo-
rithms are established upon the Retinex theory of human vision [13], which
goes beyond simple illuminant estimation. The theory assumes that slight spa-
tial changes in the response are due to changes in illumination or noise, and
large changes correspond to surface changes. The idea is to run random paths
from every surface and compute the ratio of the responses in each channel. The
descriptor of a pixel is given by the average of the ratios from different paths
beginning at the same pixel.

Another group are the Grey World methods. They are based on the assump-
tion that the scene is colorimetrically unbiased (no particular colour predomi-
nates). In other words, supposes that a complex scene contains a wide range of
reflectances, whose mean is a grey reflectance (for instance, a uniform reflectance
with half of the maximum energy). Therefore, to correct the illumination of an
image the map that takes the average of the image to the average of the canonical
gamut is used as an estimation of the illuminant change.

One of the most important groups to date are the Gamut Mapping methods.
All of them are based on the idea of canonical gamut firstly introduced by
Forsyth in [5]. If we consider all the possible reflectances under a canonical
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illuminant we obtain a convex set of RGB values, which are the whole set of
values that can be perceived under the canonical illuminant for a given camera.
This introduces a device/illuminant restriction, and it can be used to build a set
of illuminant changes that are feasible, i.e. which map the image gamut within
the canonical gamut. To build the feasible set of illuminant changes, the image
gamut is computed first. All the maps from a single colour in the image gamut
to each colour in the canonical gamut form a convex set. The intersection of the
convex sets obtained for each vertex in the image gamut results in a convex set
of feasible maps. This feasible set, which is given in the map space, αβγ-space,
normally contains a wide range of assorted maps unless the gamut of the image
is large enough to reduce the possible bindings of the image gamut inside the
canonical gamut. A selection step is needed to choose the optimal map inside
the feasible set, i.e. the best approximation to the unknown illuminant. Different
heuristics have been used to obtain a single answer. The most successful heuristic
[14] is the selection of the map that maximises the volume of the mapped image
gamut, i.e. the map that makes the image gamut as colorful as possible within
the bounds of the canonical gamut, also known as CRULE. Other heuristics like
the average map of the feasible set have also been studied. Several methods have
derived from Forsyth first approach, [9, 15].

Another kind of methods are those based on Colour by Correlation which pro-
pose to study the chromaticities of an image to decide among a set of proposed
illuminants the one that is more compatible with the chromaticities found [16]. A
correlation matrix is pre-computed and describes for each of the selected illumi-
nants the occurrence of image chromaticities. Each row in the matrix corresponds
to a different training illuminant and matrix columns to possible chromaticity
ranges.

An interesting study comparing the preformance of these different methods
described can be found in [14]. There are more contributions which are important
in colour constancy but they do not adapt to the context we work in, as they
deal with the recovery of surface spectral reflectances using reduced sets of linear
bases [6].

3 Surface Matching

The method we propose in this paper tries to introduce the surface matching
phenomenon, previously studied as one of the cues of how the human visual
system performs colour constancy [4, 17], to reduce the number of possible map
solutions. Nevertheless the idea has not yet been explored when performing
computational colour constancy. In the process of guessing the illuminant of an
image, it is likely to match the colours that we find in the image with colours
that we have previously learned, which are a set of colours we already know
for its significance. It can be easily assumed that when looking at an image
a part of the colour constancy process is the matching of the colours that we
see in the image with colours that we ‘expect’ to find in the image. This refers
to a previously learned knowledge of common colours as seen under an ideal,
canonical, illuminant.
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Considering this idea, we can pair the colours that are present in our image
with ‘reference’ colours. The values of these colours as they would be seen under
the canonical illuminant can be computed and they can be named as canonical
colours or ‘canonical surfaces’. Therefore, we can match every surface in our
image with a ‘canonical surface’. This is the surface matching process, also known
as ‘asymmetric colour matching’ and depicted in [4]. To perform the ‘surface
matching’ process, we need the set of surfaces to match with. In our surface
matching approach, we propose to use a reduced set of ‘canonical surfaces’,
carefully selected to represent the most important and frequent colours. The
selection of these canonical surfaces is a hard goal that should be addressed.

4 Relaxed Grey-World

Surface matching implies to match every image surface with every canonical sur-
face, that is to generate all the possible combinations of matchings. Even using a
reduced and significant set of image surfaces and a small set of canonical surfaces
the set of pairs of matches that can be derived is too large and introduces lots of
non-consistent pairs of matchings (if a reddish image surface is matched with a
bluish canonical surface, it is not coherent to match another bluish image surface
with a reddish canonical surface). This leads us to introduce an assumption to
constrict the set of matchings, in order to build a consistent set losing minimum
performance.

The Grey-World assumption, as depicted before, supposes the average of an
image is grey. Even though this is a strong assumption it can help us to find the
consistent constriction that maintains the colour structure of the image gamut.
In order to relax this assumption we propose another one:

Relaxed Grey-World Assumption. The image gamut under the canonical
illuminant contains grey or its average is close to grey.

Considering this assumption the set of canonical surfaces that can be paired
with each image surface can be reduced to the canonical surfaces which are close
to the image surfaces when the grey-world map is applied to the image, figure 1.
That is, the grey-world assumption is relaxed in order to find the solutions near
the grey-world, enabling some sort of flexibility near this solution.

The relaxed grey world asumption combined with surface matching lead us
to the new approach we propose in this paper. The method matches the image
surfaces with canonical surfaces that we have previously selected, but only with
the surfaces that are consistent with the relaxed grey-world assumption, i.e. the
canonical colours near a neighbourhood in the grey world transform.

First of all we need to select a representative set of surfaces and compute their
RGB values for the canonical illuminant, which is selected to be well balanced
with our sensor. Hence we have a set of k canonical surfaces, denoted as SC =
{SC

1 , SC
2 , . . . , SC

k }.
Thus, for a given image, I, acquired under an unknown illuminant U, the

matching algorithm is carried out with the following steps:
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Fig. 1. The relaxed grey-world assumption leads us to find a set of nearest-neighbour
canonical surfaces for each image surface. The image is maped to the center of the
canonical gamut (a),(b) and there the nearest-neighbour canonical surfaces for each
image surface are selected (c).

1. Getting RGB values of surfaces from the image I, denoted as SU (I) =
{SU

1 , SU
2 , . . . , SU

n }, where n is the number of surfaces.
2. Applying the grey world transform to SU (I), which places the center of the

image gamut in the center of the canonical gamut (fig. 1 a,b). It is denoted
as SGW (I).

3. For each surface, i = 1 . . . n, of SGW (I) we select the m nearest neighbours
surfaces from the canonical surfaces (fig.1 c), SC , we denote this set as SNN

i .
4. Computing the set of all possible correspondences between each SU

i with
all the surfaces in SNN

i , we name this set RCorr = {SU
1 = SNN

1,p1
, SU

2 =
SNN

2,p2
, . . . , SU

n = SNN
n,pn

; ∀pi = 1, . . . , m}, where #RCorr = mn.
5. For each element of RCorr, the corresponding αβγ map is computed, and

we obtain a set of maps, MAPRCorr
αβγ .

6. All the maps in MAPRCorr
αβγ out of the feasible set are removed, as we do not

want to deal with impossible maps.

Once we have generated the set of maps, MAPRCorr
αβγ , we propose to use

one of the existing heuristics to select one map within this set. In the following
section we show the results using the heuristics of maximum gamut volume and
average of the set. A simplification of the process can be seen in figure 2.

5 Experiments and Results

To evaluate our method in this first approach we have looked at its performance
using only synthetic data. This is a first way to evaluate methods because perfor-
mance is not affected by image noise and we are able to evaluate performance over
hundreds of synthetic images and thus obtain a reliable performance statistic.
Otherwise, with real data these problems arise, and also the available datasets
are not large enough to extensively test the method.

To build the RGB of the canonical surfaces, we have chosen a synthetic
planckian illuminant with CCT=6500K (fig. 3 (a)). A gausian narrow-band sen-
sor has been built, with centers in 450, 540 and 610 nm (fig. 3 (b)). Hence, the
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Fig. 2. An illustration of how the relaxed grey world algorithm proceeds.

(a) (b)

Fig. 3. The synthetic illuminant (a) and sensor (b) used in the experiments.

1995 reflectances of the Munsell chips have been used to synthesise the RGB
values of our canonical set of surfaces.

Once we have selected the canonical surfaces we generate synthetic images
to test the algorithm. 400 images consisting of 10 reflectances per image (from
Munsell chips randomly selected) under a random illuminant, chosen from a
frequently used selection of 11 different illuminants [14]. To test the method, we
have selected 6 surfaces from each image and found their 5 nearest neighbours
surfaces from the canonical surfaces, that is n = 6 and m = 5.

We have used as recovery error the angular error between the RGB of the

estimated illuminant, R̂GB
C

w , and the RGB of the canonical illuminant used,
RGBC

w (as it is done in [14]). These RGB values of the illuminants are normally
unknown in real images, but they can be computed easily working with synthetic
data.

recovery error = angle(R̂GB
C

w , RGBC
w )

In table 1 we can see the performance of the proposed method versus one
of the most significant colour constancy algorithms that normally achieves best
results [14], CRULE (introduced by Forsyth in [5]). The performance varies
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Table 1. Comparison of the performance of the two methods. The value shown is the
root mean square of the angular errors computed for the 400 synthetic images.

Heuristic CRULE Relaxed Grey-World

Maximum Volume map 7.09o 7.55o

Average map 9.35o 6.62o

depending on the heuristic used to select the optimal map within the computed
maps. As it can be seen, the best performance is obtained taking the average
map of the proposed Relaxed Grey World. This improvement reinforces the
use of the relaxed grey-world assumption. Also, in figure 4 the different sets of
maps generated with the two algorithms can be compared. With our method,
we avoid to generate a large set of maps that includes the worse maps. We look
for a reduced set of maps which includes the best solutions. In this sense we
have computed the average value of the best angular error for each of the 400
images and it has resulted to be 1.9o, which means that an optimal map is
included in our set of maps in the most of the cases. This result combined with
the performance of our method using the average as heuristic justifies the use of
the reduced set of maps.

Fig. 4. Comparison of the sets of maps generated with CRULE (dark dots) versus the
set of maps generated with our method (bright dots) for 2 different images. In the x-axis
is represented the angular error and in the y-axis the maximum volume heuristic.

6 Discussion

As it has been proven, the introduction of the surface matching approach to solve
computational colour constancy opens a new line of research in this problem that
can help in reducing the error of current methods, that ignore image information
that can be introduced by surface matching. The method proposed performs
good in the synthetic world and this encourages us to go on with its improvement.
The selection of canonical surfaces is an important step to pay more attention
and to be focus of a deep study. Indeed, the number of canonical surfaces used
in our experiments may seem too large to depict representative colours, but it
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has been used as a first approach to the surface matching method, to test how
good it could perform. Further work needs to be done in the selection of the set
of canonical surfaces, as they should represent more trustworthily our knowledge
of colours. When done, this part of the process of colour constancy in the human
visual system will be enabled to take part in computational approaches.
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