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Abstract

Currently there exists no application-independent

or general theory of feature detection. In this work,

a brightness induction wavelet model (BIWaM) is

extended with the long-term aim of developing a

principled model for generic local feature detec-

tion. This detector, the Feature Induction Wavelet

Model (FIWaM), uses the same “featureness” mea-

sure for a range of local features such as blobs, bars

and corners. FIWaM is a wavelet-based compu-

tational model that attempts to use the perceptual

processes involved in visual brightness induction

to enhance and detect these features. The model

uses two center-surround mechanisms in sequence

to detect features - a Gabor-like mother wavelet

followed by an explicitly-defined center-surround

region mechanism. These center-surround regions

are feature-specific and introduce the only vari-

ation in the detection schema between features.

Preliminary results have shown that this mecha-

nism is effective in detecting features and achieves

a repeatability performance in line with current

state-of-the-art detection methods.

Keywords: Brightness Induction, Feature Detec-

tion, Wavelet Transform.

1 Introduction

Feature detection has an essential role in many

important computer vision tasks, including image

matching and registration, object recognition and

tracking and scene classification. Consequently

there has been a plethora of research devoted to

developing efficient and effective feature detection

techniques. Currently, state-of-the-art detectors

use very different methods and, as a result, their

performance differs widely depending on the data

sets they are used to analyse. To date, there exists

no application-independent or general theory of

feature detection. Therefore, determining which

feature detector to use on any specific application

tends to require a priori information about the

data set, and a subjective judgement on the most

suitable method for feature detection.

This paper extends the perceptual processes

present in a low-level human visual system (HVS)

model of brightness induction, (BIWaM) [7], with

the long-term aim of developing a principled

model for generic local feature detection. Several

successful detectors [4, 6] have been modelled us-

ing “biologically plausible architecture” [3] related

to the HVS with much success. The motivation for

using the BIWaM is to incorporate many relevant

attributes of the HVS with the aim of combining

the advantages of detectors which use these at-

tributes separately.

2 Related Research

As mentioned in the previous section, biologically-

inspired frameworks have been employed success-

fully in local feature detection. Lowe’s SIFT algo-
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rithm [4] and Mikolajczyk & Schmid’s Hessian-

Affine and Harris-Affine algorithms [6] are all

based on multi-scale image decomposition. In

addition, the Difference of Gaussian (DoG) kernel

used in the SIFT scale decomposition has a center-

surround profile and thus can be thought of as a

centre-surround response mechanism.

Collins & Ge [2] employ the multi-scale con-

cept, as well as an explicit centre-surround mech-

anism, for feature extraction. Centre and sur-

round regions were defined using a Laplacian of

Gaussian kernel. The positive (circular) region of

the kernel corresponds to the central local region

while the negative (annular) region of the kernel

corresponds to the surround local region. For the

center, the kernel is used to weight values around a

location in a Gaussian fashion. A distance measure

is calculated for the centre and surround regions

and compared to that of neighbouring pixels. As

with SIFT, local extrema are selected as candidate

features.

Agrawal et al. [1] adopt a similar approach to

that of Collins & Ge [2], but the DoG kernel is

simplified to a Difference of Boxes (DoB) kernel.

Also, bi-level center and surround boxes are used,

i.e. with values of 1 or -1, in order to enable

an extremely simple and fast computation. Fi-

nally, extrema are extracted at different scales not

by blurring and down-sampling the image but by

changing the scale of the kernels.

3 The BIWaM Model

The BIWaM [7] modifies a visual stimulus in order

to reproduce the brightness induction performed

by the HVS. Brightness induction refers collec-

tively to

• brightness assimilation, where the brightness

of a visual target (considered the center re-

gion) becomes more similar to that of the

surrounding region, and

• brightness contrast, where the brightness of a

visual target becomes less similar to that of

the surrounding region.

The model is based on three main assumptions,

derived from known psychophysical phenomena:

1. Induction is higher between features of sim-

ilar spatial scale. Because image features

are isolated by spatial scale in wavelet planes,

this is achieved using the image decomposi-

tion. As Figure 1(a) illustrates, induction is

strongest between features within one octave

of each other in scale space.

2. Induction is higher between features of simi-

lar spatial orientation. Inhibition is strongest

when orientations are identical, while facilita-

tion is strongest when orientations are orthog-

onal (see Figure 1(b)). This is also inherent in

the wavelet decomposition.

3. Induction is modulated by the stimulus-

surround relative contrast. For increasing

surround contrast there is increasing inhibi-

tion and vice-versa, as can be seen in Fig-

ure 1(c).

3.1 The Wavelet Decomposition

The wavelet decomposition of the image is a key

point of the model. Images are decomposed into a

series of new images (wavelet planes) with respect

to spatial scale s and orientation o (vertical, hori-

zontal and diagonal), which is inspired by parvo-

cellular spatial frequency channels and cortical

orientation-selective receptive fields in the HVS.

The wavelet planes, wh
s , wv

s and wd
s , contain the

response of the image intensities at that orientation

to the wavelet kernel corresponding to the scale, s.

The image, I , is reconstructed as:

I = Us=1 (1)

where Us is the s-th element of a recursive series

of images

Us = (Us+1 ↑ 2) + ds+1 (2)
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(a) Assimilation is greatest when spatial scales are identical.

(b) The relative orientations must be identical for maximum

induction.

(c) The induction effect increases with an increase in sur-

round contrast.

Figure 1: The assumptions of the model.

and d is the sum of the oriented wavelet planes:

ds =
∑

o=v,h,d

wo
s , (3)

where ↑ 2 denotes up-sampling by a factor of 2.

3.2 Construction of the Perceived Image

Equation 2 describes the reconstruction of the orig-

inal image from the wavelet decomposition. The

perceived image is obtained from this reconstruc-

tion with the simple introduction of a weighting

function α, which is designed according to the

assumptions of the induction model. The modified

image recovery defined by Equation 4:

I ′ = Uα
1 = (Uα

s+1 ↑ 2) + α· ds+1 (4)

introduces α, thereby generating the perceived im-

age, I ′.

3.3 The α Weighting Function

The weighting function α can be seen as a gener-

alisation of the psychophysically-determined Con-

trast Sensitivity Function, (CSF), Cd. It has been

shown that the HVS is very sensitive to mid-

range frequencies, and to a lesser extent to low

frequencies. It is important to note that frequencies

are relative to the distance, d, between the viewer

and the visual stimulus. This concept of viewer

distance was incorporated into the definition of Cd

(see Appendix A of [7]). The weighting function

is based on this CSF but has been modified to

introduce the effect of surround contrast and is

defined as

α(s, zctr) = zctr·Cd(s) + Cmin (5)

The zctr term defined by

zctr =
r2

1 + r2
(6)

where r = σcen
σsur

, introduces relative contrast en-

ergy implicitly. The standard deviation, σ, of a

region is used as a measure of its self contrast.

Therefore the ratio r is the relative contrast energy

of the center and surround regions. The r term is

dependent on orientation o. To avoid null α values,

the Cmin term was introduced.

4 Perceptual Feature Detection

The brightness induction framework of the BI-

WaM can be modified to accomplish feature in-

duction by substituting α for a suitably designed

weighting function. As such we present what

we term the Feature Induction Wavelet Model

(FIWaM), with a new weighting function β, that

modifies Equation 4 as follows:

I ′ = Uβ
1 = (Uβ

s+1 ↑ 2) + β· ds+1 (7)

It is apparent from Equation 7 that the modified

image recovery is identical to that of the BIWaM

except for the new weighting function, β.
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However, to detect features using the FIWaM,

β is used as a feature detection measure, rather

than a weighting function and is defined using two

hypotheses:

1. Features are present within a bounded range

of scale space.

2. If a stimulus region’s response to a feature’s

characteristic shape is appropriately large, the

stimulus region contains that feature.

With these hypotheses in mind, we define β as:

β(s, zctr) = γ· zctr·Cdet(s). (8)

The new CSF, Cdet(s), is an ideal band-pass filter

that bounds the range of scale space in which

features are detected.

The zctr term is defined as previously. However,

the center and surround regions are now defined

differently for each feature, in order to reflect the

feature’s characteristic shape. Therefore, zctr mea-

sures the stimulus’s response to a specific feature’s

shape. The median contrast energy term, γ:

γ =| mediancen − mediansur | (9)

is the difference between the median intensity val-

ues of the stimulus and stimulus-surround regions

and quantifies the strength of the wavelet response

of the stimulus. Together, zctr and γ measure the

type and the strength of a detected feature, respec-

tively. Therefore, β constitutes a “featureness”

measure, that is, the degree to which a stimulus

corresponds to a feature.

4.1 Characterisation of Feature Shapes

We have investigated detection with respect to four

features - blobs, bars, corners and terminators.

These regions have a size that corresponds to the

minimum size of interest of the feature. They also

reflect the appearance of the feature decomposi-

tions in the wavelet plane, as shown in Table 1.

Feature Feature Wavelet plane Center Surround

representation representation

Blob

Bar

Corner

Terminator

Table 1: Wavelet decompositions of features along with their

center and surround region definitions.

4.2 Feature Selection

To select a stimulus region as a feature, the feature

must have a β value that is a local extremum in

(x, y, σ)-space, where σ signifies scale-space. In

addition, β must be over a certain threshold to en-

sure the feature is strong, that is, more repeatable.

For each image, detection is performed sepa-

rately for the 4 types of features described, in

all possible orientations. The aggregation of the

features from these separate detections comprises

the final feature set for an image.

One sometimes finds that different features, for

example both a blob and a bar, are detected at the

same spatial location. In such cases, the different

featureness responses are compared and the feature

with the highest featureness response is selected.

5 Experiments

To asses the detector’s performance, the repeatabil-

ity of the detected features was tested using the ex-

perimental framework constructed by Mikolajczyk

et al. [5]. In this experiment, feature detection is

performed on a sequence of images of the same

scene. One of these images is considered to be the

reference image and there exists a known homo-

graphic relationship between the reference image

and the other images in the sequence. Therefore,

for an image in the sequence, the regions of the
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(a) Blur (b) Viewpoint

(c) Zoom & rotation (d) JPEG compression

Figure 2: Repeatability for different transformations: The FIWaM plot is shown in black. Examples of data set images are

shown above the repeatability plots.

scene contained in both the image and the refer-

ence image are known. A feature is considered

to be repeated if it is found in a region common

to both images and it has been detected in both

images. Additionally, the spatial overlap of the

regions defined by the features must be greater

than a user-defined threshold. An overlap thresh-

old of 40% is typical and was used here. The

experiment was conducted on 4 sequences of six

images with homographic variances with respect to

Gaussian blurring, viewpoint, zoom & rotation and

JPEG compression. The transformation increases

in severity along the sequence of images.

The repeatability results are shown in Figure 2.

For comparison, data for five state of the art

feature detectors have been included: Harris-

Affine (HARAFF), Hessian-Affine (HESAFF),

Maximally Stable External Region (MSERAF),

Intensity Extrema-Based Region (IBRAFF) and

Edge-Based Region (EBRAFF) [5].
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One should note that repeatability is not the only

criteria available for evaluating a detector’s perfor-

mance. However, repeatability has shown itself to

be a good general indicator of performance, and so

it was used here.

5.1 Discussion

It is evident that the FIWaM detector performs

comparably with respect to state-of-the-art detec-

tors, except in cases of severe affine transforma-

tion, such as in the graffiti sequence (Figure 2(b)).

This is unsurprising given that the FIWaM detector

has coarse affine estimation. Firstly, the wavelet’s

scale decomposition may be too coarse for accu-

rate scale localisation of features. For a typical

image decomposition of 7 octaves, 5 octaves are

analysed due to the nature of the CSF. This means

that features have only 5 possible scales. Secondly,

the elliptical estimation is derived from the shape

of the center regions, not the shape of the stimulus

itself, resulting in an imprecise estimation.

6 Conclusions

In this paper, a brightness induction wavelet model

(BIWaM) was extended with the long-term aim of

developing a principled model for generic local

feature detection. It has been shown that the bright-

ness induction model can be modified successfully

to create an effective local feature detector.

However, there are many avenues for further ex-

ploration. Most promising is improving the center

and surround regions for several features so that

they more closely resemble the appearance of these

features in the wavelet decomposition. This would

improve the problem of affine variance, as would

using a more refined scale-space decomposition.

In addition, in this work, there has been no

discussion on incorporating colour information.

However, there exists a straight-forward extension

of the BIWaM to colour, namely the Colour In-

duction Wavelet Model (CIWaM). Incorporating

colour information may allow the detection of

features in channels other than intensity, such as

in the opponent colour space.
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