A CALIBRATED DATASET FOR INTRINSIC IMAGE EVALUATION
Data Sets CIC Group

 

INTRODUCTION

This dataset will be published in:
M. Serra, R. Benavente, M. Vanrell, O. Penacchio, and D.Samaras. Intrinsic Image Evaluation on Synthetic Complex Scenes. IEEE Journal of the Optical Society of America A (JOSA-A), In Review. (pdf)

We evaluate the following existing intrinsic image estimation algorithms on the data set:

  1. X. Jiang, A. Schofield, and J. Wyatt, Correlation-based intrinsic image extraction from a single image. , in European Conference on Computer Vision (ECCV), 2010. (webpage)

  2. M. Serra, O. Penacchio, R. Benavente, and M. Vanrell, Names and shades of color for intrinsic image estimation. , in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012. (webpage)

  3. P.V. Gehler, C. Rother, M. Kiefel, L. Zhang, and B. Schölkopf, Recovering intrinsic images with a global sparsity prior on reflectance. , in Advances in Neural Information Processing Systems (NIPS), 2011. (webpage)

  4. J.T. Barron and J. Malik, Color constancy, intrinsic images, and shape estimation. , in European Conference on Computer Vision (ECCV), 2012. (webpage)

Results estimation from these algorithms can be downloaded below.


DATA

Images of the dataset: synthetic_intrisic_image_dataset.rar

CODE

Matlab code to evaluate intrinsic image algorithms: code.rar

RESULT IMAGES

Results of three intrinsic image algorithms discussed above: results.rar


 © 2008 Colour in context Group | Computer Vision Center. All rights reserved | Contact webmaster |  Last updated: Monday 11 May 2009     eXTReMe Tracker